1950’s Minimiter Deluxe Transmitter

Mike Hoddy, G0JXX

Having placed an advert in the VMARS Newsletter to sell or swap one of my radios for a suitable AM transmitter to back up my Vanguard I was pleased to get a call from Richard Studley, G3UNM, offering me his Minimiter Mercury. I had found an advert in a back copy of the RSGB Bulletin for 1958 showing what could be a later model with a slide rule dial so I became interested. Ironically having seen Roger ‘4BXM’s 10m AM contribution on the Web this is actually a ‘Deluxe’ NOT a ‘Mercury’!!!

A couple of reasons for the interest were that the transmitter has high level modulation – Plate and Screen – and it’s 150W DC input which usually means lots of heavy duty valves and components. What surprised me the most is the sheer physical size and weight. Overall the dimensions are approx. 19”D 25”W 13”H and I can only guess the weight at about 110lbs including the EHT transformer. In my small shack, that will mean a major reorganisation.

The transmitter covers the following frequencies (in Mc/s):

- 3.5 – 3.8
- 7.0 – 7.3
- 14.0 – 14.40
- 21.0 – 21.45
- 28.0 – 30.0

The modes of operation are C.W., A.M. and F.M. and can be 100% modulated.

The valve line up is:

- Exciter Stage: 2 x EF91, 4 x 6AQ5
- Power Amplifier: 2 x 807, 1 x 6L6
- Modulator: 2 x 807, 1 x 12AX7, 1 x 6L6
- Power Supply: 1 x 5U4G, 2 x 866A, 1 x VR150
- 2 pilot lamps: 1 x 6.3V 0.3A, 1 x 3.5V 0.15A (modulation indicator)

Power consumption is 300W when fully loaded, in phone mode.

The transmitter was in reasonable condition given that it had last been used in 1974 as the newspaper wrapping the valves proved. Richard had stored it in a garage since then but apart from some cosmetic wear and tear it looked a reasonable project. At some point in the past the PSU had died and the rectifiers, (2 x 866A, 5U4 plus the original mains transformer) had been replaced with silicon diodes and a removable EHT transformer arrangement. One day it is planned to rebuild this to the original design and G4DDI provided me with 2x 866A’s to get started but at present I will be pleased just to get it on the air again.

On moving the transmitter around to get it into the shack I noticed a strange noise coming from the PSU section that sounded like a load of loose gravel. I was intrigued so I removed the base plate very carefully and too my surprise there was about 1/2” of mouse droppings and nesting material. Before anything else I carefully cleaned out the unit and apart from a nipped ceramic resistor and some corrosion caused by ammonia – you can guess where from – it was all still intact. I’m pleased I didn’t jump in and turn the power on otherwise the smell would have been appalling!!

The original power supply utilised a single transformer for HT, EHT and heaters but this had been replaced with 2 x 250 – 0 – 250 feeding silicon diodes to give the 300V HT and 6.3 Volt heater supplies. The EHT transformer was a huge 700 – 0 – 700 500mA beast which had been fitted with a socket so that the transformer could be removed for transportation – thank goodness.

This gave me the opportunity to test each section prior to applying high voltage. So before reinserting all the valves and the EHT transformer I applied mains slowly through a Variac. This was done over a period of about an hour, as I wanted to make sure that the large capacitors were reformed slowly. The HT and heater supplies came up well and the ‘power on’ lamp lit. HT was measured at 310V with no load and the heater voltage was 6.3 V or thereabouts. Taking the bull by the horns I reinserted the valves and again brought the power up. Apart from one 807 all the heaters came up and the VR150 ignited when the controls were set for VFO Tune. VFO voltage regulator measured in at 150V and the HT stabilised at 300V

Now for the dangerous part. I reconnected the plug to the EHT transformer and again started the process of applying mains – with one hand on the big red switch. A gentle hum came from the transformer and there were no clicks or bangs from anywhere as I reached 100% on the variac. The voltages on the transformer were as expected as the capacitors started to charge fully and the DC volts came up to 750V. I left it in this state for a while to check for over heating and breakdown before going on to the next stage.

The Deluxe has a switch to turn the VFO on for netting and tuning. In the instruction manual it suggests that this is a one handed affair as the switch is auto return, but in practice it isn’t easy to use when you are manually switching the aerial over from RX to TX!! The transmitter has 2 large meters on the front panel one for the Anode Current and one for Grid Current. The Grid is set to 7mA and the Anode Current and the Grid Current and the Grid is set to 7mA and the Anode Current was 310V with no load and the heater voltage was 6.3 V or thereabouts. Monitoring the VFO on a nearby receiver showed that the VFO was operating but was unstable. After connecting a power meter and dummy load I briefly applied full power and all the voltages came up but no Anode current and about 5W of RF, obviously something sadly wrong.

I didn’t have the time to find out exactly what until about a week later so I was looking forward to getting stuck into the problem when disaster struck. I was still using the variac to power up the unit and as I got to about 50% of mains input there was a crackle and bang and the fuses went in the variac and the mains trip fired. My first thought was the EHT transformer had died.
The VMARS Newsletter

With the modifications in place it was easy to remove the EHT transformer and test the 300V HT circuit and this was OK.

I re-tested (carefully) the EHT transformer on the bench and there were no signs of problems with all the AC volts present. The rectifier was set up as a bi-phase and I discovered that 2 of the diodes in one leg of the EHT circuit had gone short. I had some high voltage semiconductor diodes in my junk box but after replacing the duff ones they blew as well. Following an on-air conversation I obtained some IN5408 diodes that are capable of handling 1.1kV at 3A and these were fitted and the PSU is working within a good tolerance. Also there is evidence of some insulation breakdown around the EHT transformer plug and the chokes, as the PVC wiring seems not to be man enough for the task. The worst offenders have been replaced and this seems to have cured the break down problems. There is an odd problem though that when the EHT transformer is mounted vertically there is a clicking that sounds like insulation breakdown somewhere in the PSU. After extensive investigation I couldn’t trace the culprit but remarkably if the transformer is mounted horizontally the clicking stops and I have no problems with RF feedback or hum? No idea why, but as it works I am tempted to leave it alone until I can rebuild it to the original spec.

I decided that for the time being I would concentrate on the VFO problems and resolve the EHT problem later.

The VFO is a standard Colpitts VFO very similar to the Vanguard and the component values are pretty much the same – see diagram. The VFO valve is an EF91 and is followed by a buffer amp also an EF91. The stabilised voltage was 150V and showed no signs of fluctuation so my initial suspicion was the frequency determining capacitors but after a conversation on the early VMARS net with Alan G4GEN I simply swapped out the EF91’s and the VFO was happily on frequency and the note was clean. There is a further problem with the VFO in that when fully loaded the frequency will shift between 25Kc/s to 100Kc/s of the dial frequency almost at random and without warning, a fault I didn’t discover until I was using the transmitter for the first time on the VMARS net. The 6AQ5’s following the 2nd EF91 act as buffer / multipliers to give the 80,40,20,15 and 10m ranges and these appear to give a good level of drive to the PA section.

Having rebuilt the PSU there seemed to be a further problem, as I could only get about 5W of RF even with a Grid current of 7 to 10mA. I traced the signal through to the PA without any failure and I tried replacing the clamp valve (6L6) and the two 807 but without improvement. Following through the EHT I noticed that the clamp valve anode was fed via a 20K 50W resistor that also fed the screen grid of the 807s from the secondary of the modulation transformer. On measuring the voltages however there was no EHT appearing at either point.

On removing the resistor this was found to be open circuit! In my junk box I had a 22K 20W resistor and with much trepidation I replaced the original and on power up I had 150 - 200mA Anode current and 120W of RF into the dummy load! The resistor does get hot to touch (not that I have tried with the EHT turned on!) but has survived the testing phase so far.

Circuit diagram of the RF section, Minimiter Deluxe Transmitter. Component values on the next page.
One of the reasons for the frequency shift seems to be the lower limit of the grid voltage causing the buffer amplifier to introduce FM type hum below about 120V at the screen of the first 6AQ5. I also found that using a scope to test the waveform loads the output and stops the grid drive from reaching the needed 7 –10mA. I replaced this with a 6L6GC and all was well with the normal operation restored. The power output is now in the region of 100W into my doublet and seems to be stable.

The transmitter is fitted with a Belling Lee socket on the front that shorts out to ground on transmit for controlling the station receiver but with my current station I need this to be reversed – i.e., normally closed and open on transmit. To achieve this I fitted a relay internally powered off the 6.3V heater supply and connected to the original relay and routed this back to the Belling Lee socket to keep the original design.

I have combined this transmitter with an the Eddystone 680X receiver as my example is about a year younger (1958, the Tx being 1957) and is a good example of a late 50’s set up. I’m not sure what microphones would have been used, but at present the ‘blue’ Pye one works well.

Having replaced further suspect wiring and secured some floating components to prevent future problems I ran the transmitter up into a dummy load and managed to get 200mA with 7mA of drive but the actual RF output struggled to reach 200mw with 7mA of drive but the actual RF output seemed to be in excess of 250mA. The fault was traced to the Clamp valve, 6L6, that had failed but in a peculiar way. The heaters did not light up but initially tested OK although the circuitry worked in ‘key up’ position the PA output is now in the region of 100W into my doublet and seems to be stable.

The transmitter works well and on air tests are encouraging – both on AM and CW. Further work is needed but for now the set is up and running and has been used on the Saturday net (plus the Sunday CW session if I get the opportunity). I’m not happy about the ‘bulb’ fuse idea for the modulation monitor as with the original 3V one a small cough or sneeze at the wrong moment would take you off the air immediately and I have replaced it with a 12V one to give me some margin for safety!! The set isn’t particularly attractive, lacking the styling of the KW and Panda rigs of the same era (in my view), but still is well worth preserving.

The VMARS Newsletter

Issue 28

April 2003

Minimitter Deluxe – Components List

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>R1</td>
<td>47KΩ</td>
</tr>
<tr>
<td>C2</td>
<td>R2</td>
<td>47KΩ</td>
</tr>
<tr>
<td>C3</td>
<td>R3</td>
<td>330Ω</td>
</tr>
<tr>
<td>C4</td>
<td>R4</td>
<td>22KΩ</td>
</tr>
<tr>
<td>C5</td>
<td>R5</td>
<td>1.5KΩ</td>
</tr>
<tr>
<td>C6</td>
<td>R6</td>
<td>560Ω</td>
</tr>
<tr>
<td>C7</td>
<td>R7</td>
<td>33KΩ</td>
</tr>
<tr>
<td>C8</td>
<td>R8</td>
<td>27KΩ</td>
</tr>
<tr>
<td>C9</td>
<td>R9</td>
<td>33KΩ</td>
</tr>
<tr>
<td>C10</td>
<td>R10</td>
<td>30KΩ</td>
</tr>
<tr>
<td>C11</td>
<td>R11</td>
<td>7.5KΩ</td>
</tr>
<tr>
<td>C12</td>
<td>R12</td>
<td>3.5KΩ</td>
</tr>
<tr>
<td>C13</td>
<td>R13</td>
<td>20KΩ</td>
</tr>
<tr>
<td>C14</td>
<td>R14</td>
<td>7.5KΩ</td>
</tr>
<tr>
<td>C15</td>
<td>R15</td>
<td>45Ω</td>
</tr>
<tr>
<td>C16</td>
<td>R16</td>
<td>47Ω</td>
</tr>
<tr>
<td>C17</td>
<td>R17</td>
<td>47Ω</td>
</tr>
<tr>
<td>C18</td>
<td>R18</td>
<td>100Ω</td>
</tr>
<tr>
<td>C19</td>
<td>R19</td>
<td>100Ω</td>
</tr>
</tbody>
</table>

Capacitors: 30 pf variable, 50pf Var, 150pf Var, 50pf Var, .001 μF S/M, 100 pf Ceramic, .001 μF Ceramic, 100 pf, .001 μF Ceramic, 100 pf, 50 μF, 100 pf, .001 μF Ceramic, .001 μF Ceramic, 100 pf, 1000V, 8 μF, 15 μF, 32 μF, 8 μF, 100 pf, 1000V, .001 μF Ceramic, .001 μF ceramic.

Resistors: 47KΩ, 47KΩ, 330Ω, 22KΩ, 1.5KΩ, 560Ω, 33KΩ, 27KΩ, 33KΩ, 30KΩ, 7.5KΩ, 3.5KΩ, 20KΩ, 7.5KΩ, 45Ω, 47Ω, 100Ω, 100Ω.

Capacitors: 100 pf Var, 30 pf Var, 30 pf Var, 100 pf Ceramic, 100 pf Ceramic, 100 pf, 100 pf, 100 pf, 100 pf, 100 pf, 1000V, 8 μF, 15 μF, 32 μF, 8 μF, 100 pf, 1000V, .001 μF Ceramic, .001 μF ceramic.

Resistors: 47KΩ, 47KΩ, 330Ω, 22KΩ, 1.5KΩ, 560Ω, 33KΩ, 27KΩ, 33KΩ, 30KΩ, 7.5KΩ, 3.5KΩ, 20KΩ, 7.5KΩ, 45Ω, 47Ω, 100Ω, 100Ω.

Congratulations to those entrants who have won the 2004 Mini Palmer Challenge and to those competitors who have entered.

The transmitter works well and on air tests are encouraging – both on AM and CW. Further work is needed but for now the set is up and running and has been used on the Saturday net (plus the Sunday CW session if I get the opportunity). I’m not happy about the ‘bulb’ fuse idea for the modulation monitor as with the original 3V one a small cough or sneeze at the wrong moment would take you off the air immediately and I have replaced it with a 12V one to give me some margin for safety!! The set isn’t particularly attractive, lacking the styling of the KW and Panda rigs of the same era (in my view), but still is well worth preserving.

Circuit of the Minimitter audio and power stages

Capacitors: C1 30 pf variable, C2 50 pf var, C3 150 pf Var, C4 50 pf Var, C5 .001 μF S/M, C6 .001 dtto, C7 100 pf Ceramic, C8 .001 μF Ceramic, C9 100 pf, C10 .001 μF, C11 100 pf, C12 .001 Ceramic, C13 .001 Ceramic, C14 .001 Ceramic, C15 .001 Ceramic, C16 .001 Ceramic, C17 .001 μF Ceramic, C18 100 pf Ceramic, C19 .001 μF Ceramic.

Resistors: R1 47KΩ, R2 47KΩ, R3 330Ω, R4 22KΩ, R5 1.5KΩ, R6 560Ω, R7 33KΩ, R8 27KΩ, R9 33KΩ, R10 30KΩ, R11 7.5KΩ, R12 3.5KΩ, R13 20KΩ, R14 7.5KΩ, R15 45Ω, R16 47Ω, R17 47Ω, R18 100Ω, R19 100Ω.

The VMARS Newsletter

Issue 28

April 2003

Minimitter Deluxe – Components List