VMARS is a not-for-profit organisation specialising in all types of vintage communications electronics. We maintain an archive of documentation to help our members understand, research, repair and enjoy their vintage radio equipment. Access by non-members is extended as a gesture of goodwill, but not as a right.

Rare documents are frequently provided free of charge by VMARS members, and all scanning and document processing is carried out on a voluntary basis. Accordingly, we do not expect others to profit from the hard work of volunteers, who give their time freely without charge.

This is a gentle reminder that the document attached to this notice is provided to you for your personal use only. This edition remains copyright of VMARS, and while you may sell or give your copy to someone else, this right does not extend to making further copies of this information, either to give or sell to others. This includes a prohibition on placing it on websites, or printing it for sale at rallies, boot fairs or similar public events. If our goodwill is abused, then withdrawal of public access to our archive will be the result.

Please refer anyone else wanting a copy back to VMARS – either to our website at http://www.vmars.org.uk/ or by email to the Archivist at archivist@vmarsmanuals.co.uk. If you want to know more about our copyright, please see the FAQ below.

FAQ on copyright of VMARS documents

Q. How can you copyright a document that is already in the public domain?

A. Plainly the original copyright of the content has expired, or we have obtained permission to copy them. What we copyright is our own edition of the document.

Q. Surely your “own edition” is identical to the original document, so cannot be copyrighted?

A. Our editions are not identical to the original document. You will find that full advantage has been taken of electronic publishing facilities, so pages are cleaned up where possible (rendering them better than originals in some cases!), and large diagrams are prepared for both on-screen viewing and for easy printing at A4 format.

Q. Why do you not just give your manuals away, as so many do via the internet these days?

A. We do make all our manuals available free of charge (in soft copy) to VMARS members. These members have already covered the costs of running the archive via their subscriptions. The only time members are charged for copies is when they request them on paper, in which case charges are restricted to the cost of paper, ink and postage.

The VMARS archive is not a “shoe-string” operation. Money is spent on computing facilities to make copies available, and on shipping original documents securely (usually costing several pounds per shipment) to carry out the scanning. As members have already contributed to these costs, it is only reasonable that non-members should do likewise – and thus a very moderate charge is levied for copies provided to non-members. With typical commercial photocopying charges starting at 5 pence per A4 side, it will be evident that paying 4 pence for our equivalent on paper is excellent value (amounts current at Spring 2004). We also think “you get what you pay for” – we invite you to make the comparison and draw your own conclusions!

Despite the above, we will be making copies of essential technical information (circuit diagram, parts list, layout) freely available to all via our website from late 2004 onwards. This will be done to try and encourage and enable the maintenance of our remaining stock of vintage electronic equipment.
Guidance on using this electronic document

Acrobat Reader version

You need to view this document with Acrobat Reader version 5.0 or later. It is possible that the document might open with an earlier version of the Acrobat Reader (thus allowing you to get this far!), but is also likely that some pages will not be shown correctly. You can upgrade your Acrobat Reader by direct download from the internet at http://www.adobe.com/products/acrobat-readermain.html or going to http://www.adobe.com/ and navigating from there.

Don’t miss the index!

This document has had “bookmarks” added – which provide you with an “on-screen index”. These allow you to quickly move to particular parts of the document, a numbered section or maybe the circuit diagrams for instance, merely by clicking on the page title. Click on the “Bookmarks” tab on the left hand side of the Acrobat Viewer window to access this feature – move the cursor over these titles and notice it change shape as you do so. Click on any of these titles to move to that page.

Large diagrams

The large diagrams are given in two formats – in A4 size sheets to allow easy printing, and complete as originally published to allow easy on-screen viewing. These versions are in different sections of the document, which can be found within the bookmarks.

Printing the document on an A4 format printer

The document has been optimised for printing on A4 size paper (this is the common size available in UK and Europe, which measures 29.7cm by 21.0cm). Please follow these steps (these are based on Acrobat Reader version 6.0 – other versions may differ in detail):

1. Work out the page numbers you want to print. If you want to print the whole document, then within “Bookmarks” (see above), first click on “Front”, and note the page number given at the bottom of the Acrobat window – this will give you the page number of the first page to be printed. Similarly click on “End of A4 printable copy”, to determine the last page to be printed.

2. Select “File – Print” or click on the printer icon. This will bring up the print dialog box.

3. Select the correct printer if necessary.

4. In the area marked “Print Range” click on the radio button marked “Pages from..”, then enter the first and last page numbers worked out in step 1 into the “from” and “to” boxes.

5. In the “Page Handling” area, next to “Page Scaling”, select “Fit to paper”. The press “OK”

Note that the document is set up for double-sided printing – if you print it out single-sided then you will find a number of blank pages present, which may be removed and reused.

Printing the document on an US Letter format printer

Since A4 and US Letter sizes are similar, it is expected that this document should print satisfactorily on the latter format paper. This has not been tested however, and is not guaranteed. Follow the steps as for A4 printing, and make doubly sure that “Fit to paper” is selected (step 5).

Any other problems?

Please get in touch with me at archivist@vmarsmanuals.co.uk.

Richard Hankins, VMARS Archivist, Summer 2004
WIRELESS SET C12

TECHNICAL HANDBOOK - FAULT FINDING AND REPAIR DATA

This Part 2 contains fault finding and repair data in tabular and diagrammatic form. Part 1 of this EMER contains a general description of this equipment. Tels H 143 and H 144 deal with repairs.

Note: This Part 2, Issue 2, together with Part 1, Issue 2, supersedes Issue 1, Pages 1-8 and 1001-1023, dated 9 Dec 55.

INDEX TO TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>W.S. C12 - components</td>
<td>1002</td>
</tr>
<tr>
<td>2002(a)</td>
<td>12V p.s.u. - components</td>
<td>1008</td>
</tr>
<tr>
<td>2002(b)</td>
<td>24V p.s.u. - components</td>
<td>1010</td>
</tr>
<tr>
<td>2002(c)</td>
<td>24V (yellow band) p.s.u. - components</td>
<td>1011</td>
</tr>
<tr>
<td>2003</td>
<td>A.T.U. - components</td>
<td>1011</td>
</tr>
<tr>
<td>2004</td>
<td>Workshop out-test figures</td>
<td>1012</td>
</tr>
</tbody>
</table>

INDEX TO FIGURES

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>W.S. C12 - circuit diagram</td>
<td>1014</td>
</tr>
<tr>
<td>2002</td>
<td>W.S. C12 - component layout above chassis</td>
<td>1015</td>
</tr>
<tr>
<td>2003(a)</td>
<td>W.S. C12 - component layout below chassis</td>
<td>1016</td>
</tr>
<tr>
<td>2003(b)</td>
<td>W.S. C12 - tagboard details</td>
<td>1017</td>
</tr>
<tr>
<td>2004</td>
<td>W.S. C12 - frequency band switch (SA) - layout</td>
<td>1018</td>
</tr>
<tr>
<td>2005</td>
<td>W.S. C12 - system switch (SC) - layout</td>
<td>1019</td>
</tr>
<tr>
<td>2006</td>
<td>12V p.s.u. - circuit diagram</td>
<td>1020</td>
</tr>
<tr>
<td>2007</td>
<td>12V p.s.u. - component layout above chassis</td>
<td>1021</td>
</tr>
<tr>
<td>2008</td>
<td>12V p.s.u. - component layout below chassis</td>
<td>1022</td>
</tr>
<tr>
<td>2009</td>
<td>24V p.s.u. - circuit diagram</td>
<td>1023</td>
</tr>
<tr>
<td>2010</td>
<td>24V p.s.u. - component layout above chassis</td>
<td>1024</td>
</tr>
<tr>
<td>2011</td>
<td>24V p.s.u. - component layout below chassis</td>
<td>1025</td>
</tr>
<tr>
<td>2012</td>
<td>A.T.U. - circuit diagram</td>
<td>1026</td>
</tr>
<tr>
<td>2013</td>
<td>A.T.U. - component layout</td>
<td>1027</td>
</tr>
<tr>
<td>Circuit ref</td>
<td>Value</td>
<td>Tolerance</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>R1</td>
<td>560Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R2</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R3</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R4</td>
<td>2.2kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R5</td>
<td>220Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R6</td>
<td>1.2kΩ</td>
<td>+0.5%</td>
</tr>
<tr>
<td>R7</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R8</td>
<td>1kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R9</td>
<td>220Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R10</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R11</td>
<td>2200Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R12</td>
<td>47kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R13</td>
<td>1kΩ</td>
<td>+0.5%</td>
</tr>
<tr>
<td>R14</td>
<td>15kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R15</td>
<td>390Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R16</td>
<td>82Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R17</td>
<td>33kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R18</td>
<td>33kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R19</td>
<td>33kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R20</td>
<td>15Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R21</td>
<td>180Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R22</td>
<td>4.7Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R23</td>
<td>1kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R24</td>
<td>2.2kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R25</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R26</td>
<td>22kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R27</td>
<td>22Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R28</td>
<td>2.2kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R29</td>
<td>100Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R30</td>
<td>220kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R31</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R32</td>
<td>20kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R33</td>
<td>2.2MΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R34</td>
<td>1kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R35</td>
<td>47kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R36</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R37</td>
<td>1MΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R38</td>
<td>47kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R39</td>
<td>1.2MΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R40</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R41</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R42</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R43</td>
<td>22Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R44</td>
<td>22Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R45</td>
<td>22Ω</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R46</td>
<td>470kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R47</td>
<td>100kΩ</td>
<td>±0.1%</td>
</tr>
<tr>
<td>R48</td>
<td>2.2kΩ</td>
<td>±0.1%</td>
</tr>
</tbody>
</table>
Table 2001 - (cont)

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R49</td>
<td>100kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>B6</td>
</tr>
<tr>
<td>R50</td>
<td>220kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>A5</td>
</tr>
<tr>
<td>R51</td>
<td>10kΩ</td>
<td>±5%</td>
<td>4.1/2W</td>
<td>wirewound</td>
<td>E6</td>
</tr>
<tr>
<td>R52</td>
<td>500Ω</td>
<td>±5%</td>
<td>4.1/2W</td>
<td>wirewound</td>
<td>E8</td>
</tr>
<tr>
<td>R53</td>
<td>22Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>E8</td>
</tr>
<tr>
<td>R54</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>E8</td>
</tr>
<tr>
<td>R55</td>
<td>4.7Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>E7</td>
</tr>
<tr>
<td>R56</td>
<td>100kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>E7</td>
</tr>
<tr>
<td>R57</td>
<td>100Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>E8</td>
</tr>
<tr>
<td>R58</td>
<td>2.2kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>F6</td>
</tr>
<tr>
<td>R59</td>
<td>1Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>G5</td>
</tr>
<tr>
<td>R60</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>H7</td>
</tr>
<tr>
<td>R61</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>J5</td>
</tr>
<tr>
<td>R62</td>
<td>1.2kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>K5</td>
</tr>
<tr>
<td>R63</td>
<td>2.2kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>K5</td>
</tr>
<tr>
<td>R64</td>
<td>33kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>K6</td>
</tr>
<tr>
<td>R65</td>
<td>33kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>K7</td>
</tr>
<tr>
<td>R66</td>
<td>50kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>L5</td>
</tr>
<tr>
<td>R67</td>
<td>33kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>L6</td>
</tr>
<tr>
<td>R68</td>
<td>2.2kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>L7</td>
</tr>
<tr>
<td>R69</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>L8</td>
</tr>
<tr>
<td>R70</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>A8</td>
</tr>
<tr>
<td>R71</td>
<td>1kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C6</td>
</tr>
<tr>
<td>R72</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C7</td>
</tr>
<tr>
<td>R73</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C8</td>
</tr>
<tr>
<td>R74</td>
<td>4.7Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C8</td>
</tr>
<tr>
<td>R75</td>
<td>120kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C7</td>
</tr>
<tr>
<td>R76</td>
<td>10kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>C7</td>
</tr>
<tr>
<td>R77</td>
<td>4.7kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>Q6</td>
</tr>
<tr>
<td>R78</td>
<td>1.2MΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>non-ins comp gde 2</td>
<td>Q7</td>
</tr>
<tr>
<td>R79</td>
<td>1.2MΩ</td>
<td>±5%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>Q7</td>
</tr>
<tr>
<td>R80</td>
<td>30kΩ</td>
<td>±1%</td>
<td>3/4W</td>
<td>non-ins comp gde 1</td>
<td>Q7</td>
</tr>
<tr>
<td>R81</td>
<td>220kΩ</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>A6</td>
</tr>
<tr>
<td>R82</td>
<td>33kΩ</td>
<td>±10%</td>
<td>3/4W</td>
<td>ins comp gde 2</td>
<td>E6</td>
</tr>
</tbody>
</table>

Resistors - Variable

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>carbon</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV1</td>
<td>1MΩ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RV2</td>
<td>20Ω</td>
<td>-</td>
<td>-</td>
<td>wirewound</td>
<td>M7</td>
</tr>
</tbody>
</table>

Issue 2, 27 Aug 58
Table 2001 - (cont)

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100pF</td>
<td>±5%</td>
<td>750V</td>
<td>silver mica</td>
<td>D3</td>
</tr>
<tr>
<td>C2</td>
<td>0.01µF</td>
<td>+80%–20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E3</td>
</tr>
<tr>
<td>C3</td>
<td>0.01µF</td>
<td>+80%–20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>D1</td>
</tr>
<tr>
<td>C4</td>
<td>0.01µF</td>
<td>±20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E4</td>
</tr>
<tr>
<td>C5</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>paper</td>
<td>E4</td>
</tr>
<tr>
<td>C6</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>air, trimmer</td>
<td>F3</td>
</tr>
<tr>
<td>C7</td>
<td>532pF</td>
<td>-</td>
<td></td>
<td>(Part of B gang)</td>
<td>E4</td>
</tr>
<tr>
<td>C8</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>air, trimmer</td>
<td>F4</td>
</tr>
<tr>
<td>C9</td>
<td>10pF</td>
<td>±10%</td>
<td>500V</td>
<td>ceramic tube</td>
<td>F3</td>
</tr>
<tr>
<td>C10</td>
<td>532pF</td>
<td>-</td>
<td></td>
<td>(Part of A gang)</td>
<td>G4</td>
</tr>
<tr>
<td>C11</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>air trimmer</td>
<td>G4</td>
</tr>
<tr>
<td>C12</td>
<td>100pF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>G3</td>
</tr>
<tr>
<td>C13</td>
<td>0.01µF</td>
<td>+80%–20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>G2</td>
</tr>
<tr>
<td>C14</td>
<td>0.1µF</td>
<td>±20%</td>
<td>500V</td>
<td>paper</td>
<td>G2</td>
</tr>
<tr>
<td>C15</td>
<td>0.1µF</td>
<td>+80%–20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>H4</td>
</tr>
<tr>
<td>C16</td>
<td>250µF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>H2</td>
</tr>
<tr>
<td>C17</td>
<td>0.1µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>H4</td>
</tr>
<tr>
<td>C18</td>
<td>250µF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>H2</td>
</tr>
<tr>
<td>C19</td>
<td>100µF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>J3</td>
</tr>
<tr>
<td>C20</td>
<td>47µF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>J3</td>
</tr>
<tr>
<td>C21</td>
<td>15µF</td>
<td>±5%</td>
<td>500V</td>
<td>ceramic tube</td>
<td>J4</td>
</tr>
<tr>
<td>C22</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>air, trimmer</td>
<td>K4</td>
</tr>
<tr>
<td>C23</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>silver mica</td>
<td>K4</td>
</tr>
<tr>
<td>C24</td>
<td>532pF</td>
<td>-</td>
<td></td>
<td>(Part of B gang)</td>
<td>K4</td>
</tr>
<tr>
<td>C25</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>air, trimmer</td>
<td>L4</td>
</tr>
<tr>
<td>C26</td>
<td>3500pF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>L4</td>
</tr>
<tr>
<td>C27</td>
<td>3-30pF</td>
<td>-</td>
<td></td>
<td>(Part of A gang)</td>
<td>L4</td>
</tr>
<tr>
<td>C28</td>
<td>5-30pF</td>
<td>-</td>
<td></td>
<td>air, trimmer</td>
<td>M4</td>
</tr>
<tr>
<td>C29</td>
<td>0.1µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>M4</td>
</tr>
<tr>
<td>C30</td>
<td>0.1µF</td>
<td>±20%</td>
<td>500V</td>
<td>paper</td>
<td>M2</td>
</tr>
<tr>
<td>C31</td>
<td>25µF</td>
<td>+100%–20%</td>
<td>25V</td>
<td>electrolytic</td>
<td>M4</td>
</tr>
<tr>
<td>C32</td>
<td>250µF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>M2</td>
</tr>
<tr>
<td>C33</td>
<td>0.1µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>N2</td>
</tr>
<tr>
<td>C34</td>
<td>250µF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>N2</td>
</tr>
<tr>
<td>C35</td>
<td>0.25µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>P1</td>
</tr>
<tr>
<td>C36</td>
<td>0.1µF</td>
<td>±20%</td>
<td>500V</td>
<td>paper</td>
<td>P1</td>
</tr>
<tr>
<td>C37</td>
<td>0.1µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>P3</td>
</tr>
<tr>
<td>C38</td>
<td>410pF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>P2</td>
</tr>
<tr>
<td>C39</td>
<td>4.7µF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>P2</td>
</tr>
<tr>
<td>C40</td>
<td>500pF</td>
<td>±20%</td>
<td>350V</td>
<td>ceramic tube</td>
<td>Q2</td>
</tr>
<tr>
<td>C41</td>
<td>410pF</td>
<td>±2%</td>
<td>750V</td>
<td>silver mica</td>
<td>Q3</td>
</tr>
<tr>
<td>C42</td>
<td>500pF</td>
<td>±20%</td>
<td>350V</td>
<td>ceramic tube</td>
<td>Q3</td>
</tr>
<tr>
<td>C43</td>
<td>22pF</td>
<td>±10%</td>
<td>500V</td>
<td>ceramic disc</td>
<td>P2</td>
</tr>
<tr>
<td>C44</td>
<td>0.002µF</td>
<td>min</td>
<td>500V</td>
<td>ceramic disc</td>
<td>N3</td>
</tr>
<tr>
<td>C45</td>
<td>0.1µF</td>
<td>±10%</td>
<td>350V</td>
<td>paper</td>
<td>Q3</td>
</tr>
<tr>
<td>C46</td>
<td>25µF</td>
<td>+100%–20%</td>
<td>25V</td>
<td>electrolytic</td>
<td>Q4</td>
</tr>
</tbody>
</table>
Table 2001 - (cont)

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C47</td>
<td>0.002μF</td>
<td>min</td>
<td>500V</td>
<td>ceramic disc</td>
<td>P3</td>
</tr>
<tr>
<td>C48</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>Q4</td>
</tr>
<tr>
<td>C49</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>R2</td>
</tr>
<tr>
<td>C50</td>
<td>500pF</td>
<td>±20%</td>
<td>350V</td>
<td>ceramic tube</td>
<td>R4</td>
</tr>
<tr>
<td>C51</td>
<td>0.002μF</td>
<td>min</td>
<td>500V</td>
<td>ceramic disc</td>
<td>R4</td>
</tr>
<tr>
<td>C52</td>
<td>100pF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>R3</td>
</tr>
<tr>
<td>C53</td>
<td>1000pF</td>
<td>min</td>
<td>500V</td>
<td>ceramic disc</td>
<td>R2</td>
</tr>
<tr>
<td>C54</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>34 and D8</td>
</tr>
<tr>
<td>C55</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>B5</td>
</tr>
<tr>
<td>C56</td>
<td>25μF</td>
<td>+100%-20%</td>
<td>50V</td>
<td>electrolytic</td>
<td>C5</td>
</tr>
<tr>
<td>C57</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>B6</td>
</tr>
<tr>
<td>C58</td>
<td>0.002μF</td>
<td>min</td>
<td>500V</td>
<td>ceramic disc</td>
<td>D6</td>
</tr>
<tr>
<td>C59</td>
<td>4.43pF</td>
<td>-</td>
<td>-</td>
<td>(AE coupling A)</td>
<td>D8</td>
</tr>
<tr>
<td>C60</td>
<td>3900pF</td>
<td>±5%</td>
<td>750V</td>
<td>silver mica</td>
<td>D6</td>
</tr>
<tr>
<td>C61</td>
<td>4.43pF</td>
<td>-</td>
<td>-</td>
<td>(AE coupling B)</td>
<td>D8</td>
</tr>
<tr>
<td>C62</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E6</td>
</tr>
<tr>
<td>C63</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E8</td>
</tr>
<tr>
<td>C64</td>
<td>0.05μF</td>
<td>+20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E6</td>
</tr>
<tr>
<td>C65</td>
<td>500pF</td>
<td>±20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E7</td>
</tr>
<tr>
<td>C66</td>
<td>532pF</td>
<td>-</td>
<td>-</td>
<td>(Part of B gang)</td>
<td>E8</td>
</tr>
<tr>
<td>C67</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air, trimmer</td>
<td>E8</td>
</tr>
<tr>
<td>C68</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>(Part of A gang)</td>
<td>E8</td>
</tr>
<tr>
<td>C69</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air, trimmer</td>
<td>E8</td>
</tr>
<tr>
<td>C70</td>
<td>0.1μF</td>
<td>+10%</td>
<td>350V</td>
<td>paper</td>
<td>G6</td>
</tr>
<tr>
<td>C71</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air trimmer</td>
<td>G8</td>
</tr>
<tr>
<td>C72</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>G6</td>
</tr>
<tr>
<td>C73</td>
<td>100pF</td>
<td>+10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>J6</td>
</tr>
<tr>
<td>C74</td>
<td>532pF</td>
<td>-</td>
<td>-</td>
<td>(Part of B gang)</td>
<td>H8</td>
</tr>
<tr>
<td>C75</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air trimmer</td>
<td>J8</td>
</tr>
<tr>
<td>C76</td>
<td>532pF</td>
<td>-</td>
<td>-</td>
<td>(Part of A gang)</td>
<td>J8</td>
</tr>
<tr>
<td>C77</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air trimmer</td>
<td>J8</td>
</tr>
<tr>
<td>C78</td>
<td>3-30pF</td>
<td>-</td>
<td>-</td>
<td>air trimmer</td>
<td>J8</td>
</tr>
<tr>
<td>C79</td>
<td>4.7pF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>K5</td>
</tr>
<tr>
<td>C80</td>
<td>33pF</td>
<td>+10%</td>
<td>500V</td>
<td>ceramic tube</td>
<td>K7</td>
</tr>
<tr>
<td>C81</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>K5</td>
</tr>
<tr>
<td>C82</td>
<td>0.1μF</td>
<td>+10%</td>
<td>350V</td>
<td>paper</td>
<td>K6</td>
</tr>
<tr>
<td>C83</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>L5</td>
</tr>
<tr>
<td>C84</td>
<td>0.1μF</td>
<td>+10%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>L6</td>
</tr>
<tr>
<td>C85</td>
<td>22pF</td>
<td>±10%</td>
<td>750V</td>
<td>ceramic tube</td>
<td>L8</td>
</tr>
<tr>
<td>C86</td>
<td>100pF</td>
<td>±5%</td>
<td>750V</td>
<td>silver mica</td>
<td>M7</td>
</tr>
<tr>
<td>C87</td>
<td>82pF</td>
<td>±2%</td>
<td>350V</td>
<td>silver mica</td>
<td>L8</td>
</tr>
<tr>
<td>C88</td>
<td>0.05μF</td>
<td>±20%</td>
<td>350V</td>
<td>paper</td>
<td>N7</td>
</tr>
<tr>
<td>C89</td>
<td>100pF</td>
<td>±5%</td>
<td>750V</td>
<td>silver mica</td>
<td>M7</td>
</tr>
<tr>
<td>C90</td>
<td>0.01μF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>C7</td>
</tr>
<tr>
<td>C91</td>
<td>10pF</td>
<td>±10%</td>
<td>500V</td>
<td>ceramic tube</td>
<td>G3</td>
</tr>
<tr>
<td>C92</td>
<td>500pF</td>
<td>±20%</td>
<td>500V</td>
<td>ceramic tube</td>
<td>B8</td>
</tr>
</tbody>
</table>
Table 2001 - (cont)

INDUCTORS

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>filter coil</td>
<td>D3</td>
</tr>
<tr>
<td>L2</td>
<td>choke</td>
<td>D3</td>
</tr>
<tr>
<td>L3</td>
<td>low frequency r.f. coil</td>
<td>F3</td>
</tr>
<tr>
<td>L4</td>
<td>compensating coil</td>
<td>G3</td>
</tr>
<tr>
<td>L5</td>
<td>high frequency r.f. coil</td>
<td>G3</td>
</tr>
<tr>
<td>L6</td>
<td>low frequency oscillator coil</td>
<td>K4</td>
</tr>
<tr>
<td>L7</td>
<td>high frequency oscillator coil</td>
<td>L4</td>
</tr>
<tr>
<td>L8</td>
<td>compensating coil</td>
<td>L3</td>
</tr>
<tr>
<td>L9</td>
<td>power amplifier coupling choke</td>
<td>E6</td>
</tr>
<tr>
<td>L10</td>
<td>compensating coil</td>
<td>F7</td>
</tr>
<tr>
<td>L11</td>
<td>low frequency drive amplifier coil</td>
<td>G8</td>
</tr>
<tr>
<td>L12</td>
<td>high frequency drive amplifier coil</td>
<td>G8</td>
</tr>
<tr>
<td>L13</td>
<td>compensating coil</td>
<td>J7</td>
</tr>
<tr>
<td>L14</td>
<td>low frequency mixer anode coil</td>
<td>K8</td>
</tr>
<tr>
<td>L15</td>
<td>high frequency mixer anode coil</td>
<td>K8</td>
</tr>
<tr>
<td>L16</td>
<td>b.f.o. choke</td>
<td>M7</td>
</tr>
<tr>
<td>L17</td>
<td>b.f.o. coil</td>
<td>N8</td>
</tr>
</tbody>
</table>

VALVES

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>CV 131 r.f. amplifier</td>
<td>E3</td>
</tr>
<tr>
<td>V2</td>
<td>CV 2128 frequency changer</td>
<td>H3</td>
</tr>
<tr>
<td>V3</td>
<td>CV 131 i.f. amplifier</td>
<td>K3</td>
</tr>
<tr>
<td>V4</td>
<td>CV 131 i.f. amplifier</td>
<td>P3</td>
</tr>
<tr>
<td>V5</td>
<td>CV 452 demodulator, a.g.c. and a.f. amplifier</td>
<td>Q3</td>
</tr>
<tr>
<td>V6</td>
<td>CV 136 a.f. output</td>
<td>S3</td>
</tr>
<tr>
<td>V7</td>
<td>CV 2128 sender mixer</td>
<td>L6</td>
</tr>
<tr>
<td>V8</td>
<td>CV 138 drive amplifier</td>
<td>H6</td>
</tr>
<tr>
<td>V9</td>
<td>CV 138 drive amplifier</td>
<td>H7</td>
</tr>
<tr>
<td>V10</td>
<td>CV 428 r.f. output</td>
<td>E7</td>
</tr>
<tr>
<td>V11</td>
<td>CV 492 modulator voltage amplifier</td>
<td>B5 and 6</td>
</tr>
<tr>
<td>V12</td>
<td>CV 428 modulator output</td>
<td>C5</td>
</tr>
<tr>
<td>V13</td>
<td>CV 428 modulator output</td>
<td>C6</td>
</tr>
<tr>
<td>V14</td>
<td>CV 131 intercomm amplifier</td>
<td>C8</td>
</tr>
<tr>
<td>V15</td>
<td>CV 136 intercomm output</td>
<td>C8</td>
</tr>
<tr>
<td>V16</td>
<td>CV 287 voltage stabilizer</td>
<td>G2</td>
</tr>
<tr>
<td>V17</td>
<td>CV 2293 barretter</td>
<td>Q5</td>
</tr>
</tbody>
</table>
Table 2001 - (cont)

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>i.f. transformer</td>
<td>H2</td>
</tr>
<tr>
<td>T2</td>
<td>i.f. transformer</td>
<td>N2</td>
</tr>
<tr>
<td>T3</td>
<td>i.f. transformer</td>
<td>P2</td>
</tr>
<tr>
<td>T4</td>
<td>a.f. output transformer</td>
<td>S1</td>
</tr>
<tr>
<td>T5</td>
<td>modulator output transformer</td>
<td>C5</td>
</tr>
<tr>
<td>T6</td>
<td>modulator input transformer</td>
<td>A5</td>
</tr>
<tr>
<td>T7</td>
<td>intercomm input transformer</td>
<td>A8</td>
</tr>
<tr>
<td>T8</td>
<td>intercomm output transformer</td>
<td>D7</td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>Switch Ref</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAAa,b</td>
<td>Frequency selector switch</td>
<td>J3, J2</td>
</tr>
<tr>
<td>SCba</td>
<td>Master oscillator/crystal switch (NOT IN USE)</td>
<td>J3 and 2</td>
</tr>
<tr>
<td>db</td>
<td>System switch</td>
<td>M5</td>
</tr>
<tr>
<td>fc</td>
<td>Meter switch</td>
<td>P6</td>
</tr>
<tr>
<td>SE</td>
<td>Standby switch</td>
<td>S5/6</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC</td>
<td>Send/receive relay</td>
<td>S7</td>
</tr>
<tr>
<td>RLD/1</td>
<td>Aerial coupling changeover relay</td>
<td>R/R8</td>
</tr>
<tr>
<td>MR1</td>
<td>Rectifier, type W31/1</td>
<td>Q3</td>
</tr>
<tr>
<td>M4</td>
<td>Meter, 0-500μA</td>
<td>F6</td>
</tr>
<tr>
<td>PLD</td>
<td>Aerial plug</td>
<td>C3</td>
</tr>
<tr>
<td>PLB</td>
<td>D.c. control plug</td>
<td>R7</td>
</tr>
<tr>
<td>XL1</td>
<td>Crystal (NOT IN USE)</td>
<td>J3</td>
</tr>
<tr>
<td>XL2</td>
<td></td>
<td>K2</td>
</tr>
<tr>
<td>ILP2</td>
<td>Dial lamp, 12/14V 0.75W</td>
<td>Q8</td>
</tr>
<tr>
<td>ILP3</td>
<td>Dial lamp, 12/14V 0.75W</td>
<td>Q8</td>
</tr>
</tbody>
</table>
Table 2002(a) - 12V p.s.u. - components

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>33Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>wirewound</td>
<td>B1</td>
</tr>
<tr>
<td>R2</td>
<td>100Ω</td>
<td>±5%</td>
<td>4.1/2W</td>
<td>wirewound</td>
<td>B2</td>
</tr>
<tr>
<td>R3</td>
<td>33Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>B2</td>
</tr>
<tr>
<td>R4</td>
<td>0.20Ω</td>
<td>±20%</td>
<td>6W</td>
<td>wirewound</td>
<td>B3</td>
</tr>
<tr>
<td>R6</td>
<td>1.5Ω</td>
<td>±20%</td>
<td>4.1/2W</td>
<td>wirewound</td>
<td>B1</td>
</tr>
<tr>
<td>R7</td>
<td>0.30Ω</td>
<td>±20%</td>
<td>6W</td>
<td>wirewound</td>
<td>B3</td>
</tr>
<tr>
<td>R8</td>
<td>22Ω</td>
<td>±10%</td>
<td>1/2W</td>
<td>ins comp gde 2</td>
<td>G3</td>
</tr>
<tr>
<td>R9</td>
<td>0.75Ω</td>
<td>±20%</td>
<td>4.1/2W</td>
<td>wirewound</td>
<td>F2</td>
</tr>
<tr>
<td>R11</td>
<td>33Ω</td>
<td>±10%</td>
<td>1/4W</td>
<td>ins comp gde 2</td>
<td>G3</td>
</tr>
<tr>
<td>R13</td>
<td>0.47Ω</td>
<td>±20%</td>
<td>6W</td>
<td>wirewound</td>
<td>-</td>
</tr>
</tbody>
</table>

* Note: R1 is insulated composition grade 2 type on some early models.

Φ Note: On some early models R7 and R13 are wired in parallel and connected in series with the supply side of RLB1. They are shunted by RLA3.

Capacitors

C1	0.01µF	+80%–20%	350V	ceramic disc	A2
C2	0.01µF	+80%–20%	350V	ceramic disc	-
C3	25µF	+100%–20%	50V	electrolytic	C2
C4	0.5µF	±25%	75V	paper	B3
C5	0.01µF	+80%–20%	350V	ceramic disc	C3
C6	25µF	+100%–20%	50V	electrolytic	C3
C7	0.5µF	±25%	75V	paper	C3
C8	0.01µF	+80%–20%	350V	ceramic disc	-
C9	0.01µF	+80%–20%	350V	ceramic disc	C4
C10	0.01µF	+80%–20%	350V	ceramic disc	D4
C11	0.01µF	+80%–20%	350V	ceramic disc	D2
C12	25µF	+100%–20%	50V	electrolytic	D2
C13	0.01µF	+80%–20%	350V	ceramic disc	E2
C14	0.05µF	±20%	1000V	paper	E3
C15	0.01µF	+80%–20%	350V	ceramic disc	E2
C16	0.5µF	±20%	350V	ceramic disc	P2
C17	32µF	+50%–20%	450V	electrolytic	E3
C18	0.01µF	+80%–20%	350V	ceramic disc	E3
C19	0.01µF	+80%–20%	350V	ceramic disc	P3
C20	0.01µF	+80%–20%	350V	ceramic disc	P3
C21,22	32µF/32µF	+50%–20%	450V	electrolytic	E/3
C23	0.1µF	±25%	300V	paper	G3
C24	25µF	+100%–20%	50V	electrolytic	P3
Table 2002(a) - (cont)

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location (Fig 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C25</td>
<td>0.5µF</td>
<td>±25%</td>
<td>75V</td>
<td>paper</td>
<td>G3</td>
</tr>
<tr>
<td>C26</td>
<td>0.1µF</td>
<td>±25%</td>
<td>300V</td>
<td>paper</td>
<td>A2</td>
</tr>
<tr>
<td>C27</td>
<td>0.01µF</td>
<td>+80%-20%</td>
<td>350V</td>
<td>ceramic disc</td>
<td>E3</td>
</tr>
</tbody>
</table>

*Note: These components may be found on earlier sets C2 is connected to earth from the junction of R4 and L1 C6 is connected to earth from the junction of RLBL and L3

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>l.t. filter choke</td>
<td>B3</td>
</tr>
<tr>
<td>L2</td>
<td>l.t. filter choke</td>
<td>C3</td>
</tr>
<tr>
<td>L3</td>
<td>l.t. filter choke</td>
<td>C1</td>
</tr>
<tr>
<td>L4</td>
<td>h.t. filter choke</td>
<td>E1</td>
</tr>
<tr>
<td>L5</td>
<td>r.f. choke</td>
<td>E2</td>
</tr>
<tr>
<td>L6</td>
<td>r.f. choke</td>
<td>E3</td>
</tr>
<tr>
<td>L7</td>
<td>h.t. filter choke</td>
<td>E2</td>
</tr>
<tr>
<td>L8</td>
<td>h.t. filter choke</td>
<td>E3</td>
</tr>
<tr>
<td>L9</td>
<td>smoothing choke</td>
<td>F2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve ref</th>
<th>Description</th>
<th>Location (Fig 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V18</td>
<td>CV 493 half-wave rectifier</td>
<td>F3</td>
</tr>
<tr>
<td>V19</td>
<td>CV 493 half-wave rectifier</td>
<td>F2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuse ref</th>
<th>Description</th>
<th>Location (Fig 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS1</td>
<td>5A l.t. fuse</td>
<td>A3</td>
</tr>
<tr>
<td>FS2</td>
<td>250mA HT2 fuse</td>
<td>F1</td>
</tr>
<tr>
<td>FS3</td>
<td>250mA HT1 fuse</td>
<td>G2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
<th>Location (Fig 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>vibrator transformer (can be used for either 12V or 24V input by alteration of tapping points)</td>
<td>D3</td>
</tr>
<tr>
<td>VB1</td>
<td>vibrator, non-synchronous, 12V input</td>
<td>D3</td>
</tr>
<tr>
<td>X1</td>
<td>Rotary converter, 12V input</td>
<td>D & F2</td>
</tr>
<tr>
<td>SA</td>
<td>OFF/START/ON switch</td>
<td>A2</td>
</tr>
<tr>
<td>RLA/4</td>
<td>voltage control relay</td>
<td>A2 & A4</td>
</tr>
<tr>
<td>RLB/1</td>
<td>send/receive relay</td>
<td>F1</td>
</tr>
<tr>
<td>AIF1</td>
<td>pilot lamp, 12V, 2.ZN</td>
<td>B2</td>
</tr>
</tbody>
</table>

Issue 2, 27 Aug 58
Table 2002(b) - 24V p.s.u. - components

The components of the 24V p.s.u. are the same as the 12V p.s.u. except as shown in this table.

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Type</th>
<th>Location (Fig 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@R1</td>
<td>200Ω</td>
<td>±5%</td>
<td>1/2W</td>
<td>wirewound</td>
<td>C2</td>
</tr>
<tr>
<td>XR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*R5</td>
<td>9.9Ω</td>
<td>-</td>
<td>-</td>
<td>wirewound</td>
<td>A1</td>
</tr>
<tr>
<td>*R10</td>
<td>5.5Ω</td>
<td>-</td>
<td>-</td>
<td>wirewound</td>
<td>C2</td>
</tr>
<tr>
<td>*R12</td>
<td>100Ω</td>
<td>±5%</td>
<td>1/2W</td>
<td>wirewound</td>
<td>C1</td>
</tr>
<tr>
<td>*R13</td>
<td>200Ω</td>
<td>±5%</td>
<td>1/2W</td>
<td>wirewound</td>
<td>B1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@C27</td>
<td>0.01μF</td>
<td>E3</td>
</tr>
<tr>
<td>*C28</td>
<td>0.01μF</td>
<td>C2</td>
</tr>
<tr>
<td>*C29</td>
<td>0.01μF</td>
<td>A2</td>
</tr>
<tr>
<td>*C30</td>
<td>0.01μF</td>
<td>A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@FS1</td>
<td>Fuse, LT3A</td>
<td>B3</td>
</tr>
<tr>
<td>@R10</td>
<td>fan filter choke</td>
<td>C1/2</td>
</tr>
<tr>
<td>@SB</td>
<td>fan microswitch</td>
<td>B2</td>
</tr>
<tr>
<td>@ILP1</td>
<td>pilot lamp, 12/14V, 0.75W</td>
<td>C2</td>
</tr>
<tr>
<td>@ILP2</td>
<td>pilot lamp, 12/14V, 0.75W</td>
<td>B1</td>
</tr>
<tr>
<td>@X1</td>
<td>rotary converter, 24V input</td>
<td>D2,E2</td>
</tr>
<tr>
<td>@X2</td>
<td>fan</td>
<td>C2</td>
</tr>
<tr>
<td>@VB1</td>
<td>vibrator, non-synchronous, 24V input</td>
<td>D3</td>
</tr>
<tr>
<td>@RLA/4</td>
<td>voltage control relay</td>
<td>A2</td>
</tr>
</tbody>
</table>

Notes: @ changed in value or location
@ deleted
* added
Table 2002(c) - 24V (yellow band) p.s.u. - components

The components of the 24V (yellow band) p.s.u. are the same as the 12V p.s.u. except as shown in this table.

RESISTORS

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>type</th>
<th>Location (Fig 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØR1</td>
<td>200Ω</td>
<td>±5%</td>
<td>1/2W</td>
<td>wirewound</td>
<td>C2</td>
</tr>
<tr>
<td>XR3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*R4</td>
<td>12Ω</td>
<td>-</td>
<td>-</td>
<td>wirewound</td>
<td>A1</td>
</tr>
<tr>
<td>*R10</td>
<td>6Ω</td>
<td>-</td>
<td>-</td>
<td>wirewound</td>
<td>G2</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØX1</td>
<td>rotary converter, 24V input</td>
<td>D3</td>
</tr>
<tr>
<td>ØVB1</td>
<td>vibrator, non-synchronus, 24V input</td>
<td>A2</td>
</tr>
</tbody>
</table>

Notes: Ø changes in value or location
X deleted
* added

Table 2003 - A.T.U. - components

<table>
<thead>
<tr>
<th>Circuit ref</th>
<th>Description or function</th>
<th>Location (Fig 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*R1</td>
<td>resistor, 220 ± 10% 1/4W composition</td>
<td>B2</td>
</tr>
<tr>
<td>*R2</td>
<td>resistor, 6.8kΩ ±10% 1/2W composition</td>
<td>C2</td>
</tr>
<tr>
<td>*C1</td>
<td>capacitor, 0.01µF ±80% -20% 350V ceramic disc</td>
<td>C2</td>
</tr>
<tr>
<td>*C2</td>
<td>capacitor, 0.01µF ±80% -20% 350V ceramic disc</td>
<td>E2</td>
</tr>
<tr>
<td>*V1</td>
<td>valve, crystal, CG 12-E</td>
<td>C2</td>
</tr>
<tr>
<td>*V2</td>
<td>valve, crystal, CV4,4,8</td>
<td>D2</td>
</tr>
<tr>
<td>RLF/2</td>
<td>A aerial relay</td>
<td>G5</td>
</tr>
<tr>
<td>RLE/2</td>
<td>B aerial relay</td>
<td>E5</td>
</tr>
<tr>
<td>ILP4</td>
<td>dial lamp, 12/14V, 0.75W</td>
<td>G5</td>
</tr>
<tr>
<td>ILP5</td>
<td>dial lamp, 12/14V, 0.75W</td>
<td>D5</td>
</tr>
<tr>
<td>L1</td>
<td>A aerial coil</td>
<td>A4</td>
</tr>
<tr>
<td>L2</td>
<td>B aerial coil</td>
<td>B4</td>
</tr>
<tr>
<td>T1</td>
<td>aerial current transformer</td>
<td>B2</td>
</tr>
<tr>
<td>PLD</td>
<td>r.f. input plug</td>
<td>B6</td>
</tr>
<tr>
<td>PLB</td>
<td>d.c. control plug</td>
<td>F4</td>
</tr>
</tbody>
</table>

*Note: These components are not separately provisioned as spares. In case of failure the entire transformer assembly must be changed.

Issue 2, 27 Aug 58
<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum consumption</td>
<td>REC ONLY: 5A at 12V, 3.2A at 24V</td>
</tr>
<tr>
<td></td>
<td>REC, TRANSMIT & I/C: 7.2A at 12V, 6A at 24V</td>
</tr>
<tr>
<td></td>
<td>As above but on 'Send' 17.2A at 12V, 10.5A at 24V</td>
</tr>
<tr>
<td>HTM limits</td>
<td>12V, 205 - 235V; 24V, 210 - 245V</td>
</tr>
<tr>
<td>HT2 limits</td>
<td>12V, 370 - 410V; 24V, 370 - 395V</td>
</tr>
<tr>
<td>Bias supply limits</td>
<td>1.5 - 2.0V</td>
</tr>
<tr>
<td>Receiver heater limits</td>
<td>12V, 11.6 - 12V; 24V, 12 - 14V</td>
</tr>
<tr>
<td>Sender heater limits</td>
<td>12V, 11.5 - 12V; 24V, 12 - 14V</td>
</tr>
<tr>
<td>R.F. sensitivity</td>
<td>Not less than 50mV output for 2.5μV input modulated 30% at 400o/s</td>
</tr>
<tr>
<td>I.F. bandwidth</td>
<td>5-8k/s at 3dB points. Not more than 30kc/s at 30dB points</td>
</tr>
<tr>
<td>H.F. band, calibration error</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>4Mc/s</td>
</tr>
<tr>
<td></td>
<td>5Mc/s</td>
</tr>
<tr>
<td></td>
<td>6Mc/s</td>
</tr>
<tr>
<td></td>
<td>7Mc/s</td>
</tr>
<tr>
<td></td>
<td>8Mc/s</td>
</tr>
<tr>
<td></td>
<td>9Mc/s</td>
</tr>
<tr>
<td></td>
<td>10Mc/s</td>
</tr>
<tr>
<td>L.F. band, calibration error</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>1.6Mc/s</td>
</tr>
<tr>
<td></td>
<td>2.0Mc/s</td>
</tr>
<tr>
<td></td>
<td>2.5Mc/s</td>
</tr>
<tr>
<td></td>
<td>3.0Mc/s</td>
</tr>
<tr>
<td></td>
<td>3.5Mc/s</td>
</tr>
<tr>
<td></td>
<td>4.0Mc/s</td>
</tr>
<tr>
<td>Image rejection ratio</td>
<td>Frequency</td>
</tr>
<tr>
<td>L.F. band</td>
<td>2Mc/s</td>
</tr>
<tr>
<td></td>
<td>3Mc/s</td>
</tr>
<tr>
<td></td>
<td>4Mc/s</td>
</tr>
<tr>
<td>H.F. band</td>
<td>6Mc/s</td>
</tr>
<tr>
<td></td>
<td>8Mc/s</td>
</tr>
<tr>
<td></td>
<td>10Mc/s</td>
</tr>
</tbody>
</table>
Table 2004 - (cont)

<table>
<thead>
<tr>
<th>Test</th>
<th>Frequency</th>
<th>I.F. rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.F. rejection ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Mc/s</td>
<td>50dB</td>
</tr>
<tr>
<td>L.F. band</td>
<td>3Mc/s</td>
<td>70dB</td>
</tr>
<tr>
<td></td>
<td>4Mc/s</td>
<td>80dB</td>
</tr>
<tr>
<td>H.F. band</td>
<td>4Mc/s</td>
<td>80dB</td>
</tr>
<tr>
<td></td>
<td>6Mc/s</td>
<td>80dB</td>
</tr>
<tr>
<td></td>
<td>8Mc/s</td>
<td>80dB</td>
</tr>
<tr>
<td></td>
<td>10Mc/s</td>
<td>80dB</td>
</tr>
<tr>
<td>C.W. performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.G.C. characteristic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal/noise ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Mc/s</td>
<td>5μV</td>
</tr>
<tr>
<td>L.F. band</td>
<td>3Mc/s</td>
<td>5μV</td>
</tr>
<tr>
<td></td>
<td>4Mc/s</td>
<td>4μV</td>
</tr>
<tr>
<td>H.F. band</td>
<td>4Mc/s</td>
<td>4μV</td>
</tr>
<tr>
<td></td>
<td>6Mc/s</td>
<td>4μV</td>
</tr>
<tr>
<td></td>
<td>8Mc/s</td>
<td>3.5μV</td>
</tr>
<tr>
<td></td>
<td>10Mc/s</td>
<td>3.5μV</td>
</tr>
<tr>
<td>R.F. power output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netting error</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulator sensitivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With set adjusted to give 200mW a.f. for an r.f. input at 3Mc/s modulated 30% at 400c/s the a.f. output at a frequency not exceeding 1kc/s must be at least 60mV when the modulation is removed from the input and the set is switched to CW.

An increase of r.f. input from 500μV to 50mV must not cause a change in receiver a.f. output of more than 15 times (+12dB). A reduction of input from 500μV to 5μV must not cause a change in a.f. output of more than 5 times (-7dB).

Not less than 4.1W at 4Mc/s (H.F. and L.F. band).
Not less than 2.7W at 2Mc/s and 3.0W at 10Mc/s.

Not more than 1kc/s at 10Mc/s.

100% modulation must be obtained with not more than 15mW input at 1kc/s.
Fig 2002 – W.S. C12 – component layout above chassis
Fig 2003(a) - W.S. G12 - component layout below chassis
Fig 2003(b) - W.S. C12 - Tag board details
Fig 2004 - W.S. C12 - Frequency band switch (SA) - layout
Fig 2005 - W.S. 012 - System switch (SC) - layout
12V p.s.u. - circuit diagram
Fig 2007 - 12V p.s.u. - component layout above chassis
Fig 2008 - 12V p.s.u. - component layout below chassis
V p.s.u. - circuit diagram
Fig 2010 - 24V p.s.u. - component layout above chassis

Page 1024
Fig 2011 - 24V p.s.u. - component layout below chassis
Fig 2012 - A.T.U. - circuit diagram
Fig 2013 - A.T.U. - component layout

END
Fig 2006 - 12V p.s.u. - circuit diagram
Fig 2009 - 24V p.m.i. - circuit diagram