TM 11-5820-357-10, 29 December 1960, is changed as follows:

Page 1. Delete the following from page 1.

II. BASIC ISSUE ITEMS LIST29
Page 3, paragraph 1. Add the following sentence to paragraph 1. A basic issue items list or items troop installed or authorized list is not applicable to this equipment.

Paragraph 1.1. Paragraph 1.1 is superseded by the following:
1.1. Indexes of Publications
 a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.
 b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

Paragraph 2. Paragraph 2 is superseded by the following:
2. Forms and Records.
 a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750.

2.1. Reporting of Equipment Publication Improvements
 The reporting of errors, omissions, and recommendations for improving this publication by the individual user is encouraged. Reports should be submitted on DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forwarded direct to Commander, US Army Electronics Command, ATTN: AMSEL-,MA-CR, Fort Monmouth, NJ 07703.

Page 5. After paragraph 5 and paragraph 5.1.

5.1. Items Comprising an Operable Equipment
 Radio Receiver R-390/URR is shown in figure 1.

<table>
<thead>
<tr>
<th>FSN</th>
<th>QTY</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5820-503-1242</td>
<td></td>
<td>Receiver, Radio R-390/URR RF which includes:</td>
</tr>
<tr>
<td>5995-173-8839</td>
<td>1</td>
<td>Cable Assembly, Power CX-1358&U: 2 cond No. 18 AWG, 8 ft lg</td>
</tr>
<tr>
<td>5820-539-9006</td>
<td>1</td>
<td>Power Supply PP621.U URR (Installed in equipment)</td>
</tr>
</tbody>
</table>

*This Change supersedes C 1, 18 July 1963
Paragraph 6. Subparagraph 6b is superseded by the following:

b. Running Spares (fig. 5).

<table>
<thead>
<tr>
<th>FSN</th>
<th>Qty</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>5960-1883553</td>
<td>1</td>
<td>Electron tube: SMIL type 6AJ5</td>
</tr>
<tr>
<td>5960-118-3551</td>
<td>1</td>
<td>Electron tube: MIIL type 6AK6</td>
</tr>
<tr>
<td>5960-188-3602</td>
<td>1</td>
<td>Electron tube: MIL type 6BH6</td>
</tr>
<tr>
<td>5960-188-6589</td>
<td>1</td>
<td>Electron tube: MIL type 6BJ6</td>
</tr>
<tr>
<td>5960-188-8515</td>
<td>1</td>
<td>Electron tube: MIL type 6C4</td>
</tr>
<tr>
<td>5960-262-0167</td>
<td>1</td>
<td>Electron tube: MIL type 12AT7WA</td>
</tr>
<tr>
<td>5960-166-7663</td>
<td>2</td>
<td>Electron tube: MIL type 12AU7</td>
</tr>
<tr>
<td>5960-167-0389</td>
<td>1</td>
<td>Electron tube: MIL type 5651</td>
</tr>
<tr>
<td>5960-264-2089</td>
<td>1</td>
<td>Electron tube: MIL type 5749/6BA6W</td>
</tr>
<tr>
<td>5960-262-0810</td>
<td>1</td>
<td>Electron tube: MIL type 5814A</td>
</tr>
<tr>
<td>5960-264-1486</td>
<td>1</td>
<td>Electron tube: type 6082 per BUSHIPS Spec</td>
</tr>
<tr>
<td>5920-131-9821</td>
<td>6</td>
<td>Fuse, cartridge: 3 amp; 125V; Littlefuse No. 313003</td>
</tr>
<tr>
<td>5920-537647</td>
<td>5</td>
<td>Fuse, cartridge: 38 amp; 250V; MIL type F02GR375B</td>
</tr>
<tr>
<td>6240-155-7836</td>
<td>1</td>
<td>Lamp, incandescent: 28V; 0.04 amp; Fed Spec No. W-L-111b, trade No. 327</td>
</tr>
<tr>
<td>590-502-4840</td>
<td>1</td>
<td>Resistor, current regulating: MIL type TJ311MO1</td>
</tr>
</tbody>
</table>

Page 13. Figure 8 (part 2 of 2), step 7. Add following: Caution: When turning the ZERO ADJ control knob, be careful not to force the knob counterclockwise beyond the stop. The shaft can be turned to a point at which the plate on the end of the shaft is forced off.

Page 25. Delete paragraph 20 and substitute:

20. Preventive Maintenance
Preventive maintenance is the systematic care, servicing, and inspection of equipment to prevent the occurrence of trouble, to reduce downtime, and to assure that the equipment is serviceable.

20.2. Daily Preventive Maintenance Checks and Service Charts

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Procedure</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exterior surfaces</td>
<td>Clean the receiver dust covers and panel; clean the frequency indicator glass and meter glasses</td>
<td>Par. 20.3.</td>
</tr>
<tr>
<td>2</td>
<td>Frequency indicator glass</td>
<td>Inspect frequency indicator glass and the meter glasses for cracks and breaks.</td>
<td>Fig. 1.</td>
</tr>
<tr>
<td>3</td>
<td>Cords and cables</td>
<td>Check cords and cables for cracks and breaks.</td>
<td>None.</td>
</tr>
<tr>
<td>4</td>
<td>Connectors</td>
<td>Inspect connectors on the rear of the receiver for tightness.</td>
<td>None.</td>
</tr>
<tr>
<td>5</td>
<td>Knobs and switches</td>
<td>While making the operational test (item 6) check the mechanical action of each knob and switch for external and internal binding.</td>
<td>Fig. 6.</td>
</tr>
</tbody>
</table>
20.3. Cleaning
Inspect the exterior of the receiver. The exterior should be clean, and free of dust, dirt, grease, and fungus.

Warning: Cleaning Compound (Federal stock No. 7930-395-9542) is flammable and its fumes are toxic. Provide adequate ventilation. Do not use near a flame.

a. Remove dirt and dust with a clean soft cloth. Dampen the cloth with cleaning compound if necessary.

b. Remove grease, fungus, and ground-in dirt from the case; use a cloth dampened (not wet) with cleaning compound.

c. Remove dirt from the frequency indicator glass and the meter glass with a cloth dampened with cleaning compound.

Caution: To prevent breakage, do not press on the glass.

d. Remove dust and dirt from the jacks and plugs with a brush.

e. Clean the panel and control knobs with a soft cloth. If necessary, dampen the cloth with water and use mild soap.

Page 28. Add the following to appendix I.
TM 38-750 The Army Maintenance Management System (TAMMS).
Page 29, appendix II. Delete appendix II.
WARNING
DANGEROUS VOLTAGES EXIST IN THIS EQUIPMENT
Be careful when working on the 240-volt power supply and the circuits connected to it, or on the 115/230-volt ac line connections. Before connecting the receiver to an ac source, be sure that the chassis is connected to the same ground as the ac source.

DON'T TAKE CHANCES!
Figure 1. Radio Receiver R-390/ URR.
CHAPTER 1
INTRODUCTION

Section I. GENERAL

1. Scope
This manual describes Radio Receiver R390/URR (fig. 1) and covers its operation and operator’s maintenance. It includes operation under usual conditions, methods of cleaning and inspecting the equipment, and replacement of parts available to first echelon maintenance. Throughout this manual, Radio Receiver R390/URR will be referred to as the receiver.

2. Forms and Records
a. Unsatisfactory Equipment Reports.
 (2) Fill out and forward AF TO Form 29 (Unsatisfactory Report) to the Commander, Air Materiel Command, Wright-Patterson Air Force Base, Ohio, as prescribed in AR TO 0035D-54.

b. Report of Damaged or Improper Shipment. Fill out and forward DD Form 6 (Report of Damaged or Improper Shipment) as prescribed in AR 700-58 (Army); Navy Shipping Guide, Article 1850-4 (Navy); and AFR 71-4 (Air Force).

c. Preventive Maintenance Forms. Prepare DA Form 11-238 (fig. 12), Maintenance Checklist for Signal Equipment (Sound Equipment, Radio, Direction Finding, Radar, Carrier, Radiosonde and Television), in accordance with instructions on the form.

e. Comments on Manual. Forward all other comments on this publication directly to the Commanding Officer, U. S. Army Signal Materiel Support Agency, ATTN: PA2d, Fort Monmouth, N. J.

Section II. DESCRIPTION AND DATA

3. Purpose and Use
a. Radio Receiver R390/URR is a general purpose receiver for use in fixed and mobile applications. The receiver provides for reception of continuous wave (cw), modulated-continuous-wave (mcw) amplitude-modulated (am.), frequency shift keyed (fsk), and single-sideband signals.

b. The receiver furnishes audiofrequency (af) output power to a local loudspeaker and headset or a balanced line. An intermediate frequency (if.) output is also provided so that received radio teletypewriter signals may be fed to other equipment for conversion into signals usable by teletypewriter equipment.

4. System Application
a. Space-Diversity Receiving System.
 (1) Two or three receivers can be connected as a space-diversity receiving system for reception of voice signals (fig. 2). This system provides sub-
stantially uniform audio output to a loudspeaker or headset, minimizing the effect of fading signals.

(2) Rhombic or doublet antennas spaced at least 600 feet apart are connected to the two receivers.

b. Space-Diversity Radio Teletypewriter System. Figure 3 shows two receivers connected in a space-diversity radio teletypewriter system. The doublet or rhombic antennas feed the incoming frequency-shift signals to the receivers. The outputs of the receivers are applied to a converter which provides diversity combining and produces direct current (dc) signals for the operation of teletypewriter equipment.

c. Single-Sideband Radio Teletypewriter System. A receiver and Single Sideband Converter CV-157/URR are connected as shown in Figure 4 for the reception of single-sideband (ssb) multichannel radio teletypewriter signals occupying 12 kilocycles (kc) of radio-frequency (rf) spectrum space divided into two 6-ke sidebands, one 6-ke sideband on each side of a reduced carrier. A double-sideband signal, either am. or phase-modulated (pm), occupying up to a total of 12 kc of spectrum space also can be received. For additional information, refer to TM 11-649.

5. Technical Characteristics
Frequency range 0.5 to 32 mc in 32 bands.
Type of signals received A1 (cw), A2 (mcw), A3 (voice), F1 (frequency-shift keying), and A9 (composite transmissions such as multichannel radio teletypewriter signals).

Type of tuning Continuous; frequency read directly on counter-type indicator.
Calibration points: Every 100 kc.

Power source: 115/230 volts ac, 48-62 cps (+10%).

Power input: 270 watts total; 170 watts with oven heaters off.

Antenna requirements:
- Unbalanced: Random length straight-wire or vehicular-mounted whip.
- Balanced: 125-ohm nominal terminating impedance; matches 50- to 200-ohm balanced transmission lines or unbalanced lines, using adapters.

6. Components of receiver

a. **Components.** The components of Radio Receiver R-390/URR are listed in the following chart.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Item</th>
<th>Height (in.)</th>
<th>Depth (in.)</th>
<th>Width (in.)</th>
<th>Unit weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radio Receiver R-390/URR</td>
<td>10 1/2</td>
<td>17 1/4</td>
<td>19</td>
<td>65</td>
</tr>
<tr>
<td>1</td>
<td>Power Supply PP-621/URR</td>
<td>5 7/8</td>
<td>4 1/8</td>
<td>6 3/4</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>Power Cable Assembly CX-1358/U</td>
<td></td>
<td></td>
<td>96</td>
<td>0.677</td>
</tr>
<tr>
<td>2</td>
<td>Technical manuals</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Running spares (b below)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10 1/2</td>
<td>17 1/4</td>
<td>19</td>
<td>84.677</td>
</tr>
</tbody>
</table>

b. **Running Spares** *(fig. 5).*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electron tube, 6AJ6</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 6AK6</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 6BH6</td>
</tr>
<tr>
<td>2</td>
<td>Electron tube, 6BJ6</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 6C4</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 12AT7WA</td>
</tr>
<tr>
<td>2</td>
<td>Electron tube, 12AU7</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 5651</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 5749/6BA6W</td>
</tr>
<tr>
<td>2</td>
<td>Electron tube, 5814A</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube, 6082</td>
</tr>
<tr>
<td>1</td>
<td>Electron tube 26Z5W (For PP-621/URR)</td>
</tr>
<tr>
<td>6</td>
<td>Fuses, cartridge, 3 amp, 125v</td>
</tr>
<tr>
<td>6</td>
<td>Fuse, cartridge, 3/8 amp, 250v</td>
</tr>
<tr>
<td>1</td>
<td>Lamp, 0.04 amp, 28v</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, current-regulating, TJ311MOI</td>
</tr>
</tbody>
</table>

7. **Description**

a. The receiver *(fig. 1)* is designed for mounting in a standard 19-inch rack or a table-top cabinet.

b. All operating controls, indicators, and a phones jack are located on the front panel. Two handles are provided for removing the receiver from the rack or cabinet. The chassis is enclosed by dust covers which may be removed when the receiver is installed in a cabinet.

c. Antenna connectors, operating and spare fuses, a power cable, an if. connector, an OVENS switch, terminal boards, and special tools for use by higher echelon personnel, are mounted on the rear panel *(fig. 15).* Cutouts are provided to permit access to internal controls used by higher echelon personnel.

8. **Additional Equipment Required**

The following material is not supplied as a part of Radio Receiver R-390/URR but is required for its operation. The connectors required will depend on the particular installation.

Antenna:
- **Balanced** Doublet or rhombic.
- **Unbalanced** Random-length straight-wire or whip.

Low-impedance transmission line:
- **Balanced** 50 to 200 ohm.
- **Unbalanced** 70-ohm coaxial cable.

Connector** Connector Plug UG-970/U or connector Plug UG-971 U.**

Headset** Headset Navy type CW-49507 or**
Figure 5. Running spares.
CHAPTER 2
OPERATING INSTRUCTIONS

Note. This chapter covers only items used by the operator; items used by maintenance personnel are covered in instructions for the appropriate maintenance echelon. Installation instructions are covered in instructions for the appropriate maintenance echelon.

9. General
Take the following precautions, when setting the controls.

a. Check to see that the 115V-230V switch is in the proper position for the source of voltage being used. If this switch is placed in the 115V setting when the receiver is connected to a 230V source, the power fuses will blow and possible damage to the receiver may result.

b. Do not turn the MEGACYCLES CHANGE control beyond 00 or 31 megacycles.

c. Do not turn the KILOCYCLES CHANGE control beyond 000 counterclockwise or 999 clockwise. If a plus or minus sign appears in the third indicator column from the left, the control has been turned too far.

d. Do not turn the FUNCTION switch counterclockwise beyond OFF or clockwise beyond SQUELCH.

10. Controls and Indicators
The receiver controls and indicators and their functions are listed in the following chart.

<table>
<thead>
<tr>
<th>Control or indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE LEVEL meter</td>
<td>Indicates level of balanced-line output.</td>
</tr>
<tr>
<td>LINE METER switch</td>
<td>Position Function</td>
</tr>
<tr>
<td>OFF</td>
<td>Disconnects LINE LEVEL METER from balanced-line output.</td>
</tr>
<tr>
<td>+10</td>
<td>Adds 10 vu to LINE LEVEL reading.</td>
</tr>
<tr>
<td>0</td>
<td>LINE LEVEL meter is read directly in vu</td>
</tr>
<tr>
<td>-10</td>
<td>10 vu is to be subtracted from the LINE LEVEL vu reading.</td>
</tr>
<tr>
<td>LINE GAIN control</td>
<td>Controls level of af signal supplied to balanced line output terminals.</td>
</tr>
<tr>
<td>AGC SWITCH</td>
<td>A three-position switch that determines rapidity of change in gain of receiver for a certain change of signal strength.</td>
</tr>
<tr>
<td>LIMITER switch</td>
<td>In any position other than OFF, is adjustable to limit static interference.</td>
</tr>
<tr>
<td>CARRIER LEVEL meter</td>
<td>Indicates level of incoming signal.</td>
</tr>
<tr>
<td>BANDWIDTH KC control</td>
<td>Causes receiver to reject frequencies that differ from the carrier frequency by more than the indicated control setting.</td>
</tr>
<tr>
<td>BFO PITCH control</td>
<td>Varies pitch of tone when receiving CW signals.</td>
</tr>
<tr>
<td>AUDIO RESPONSE switch</td>
<td>Varies the response of the audio amplifier.</td>
</tr>
<tr>
<td>SHARP</td>
<td>Function</td>
</tr>
<tr>
<td>An 800-cps filter is inserted into the audio circuit and will only pass audio signals of 800 cps or less.</td>
<td></td>
</tr>
<tr>
<td>MED.</td>
<td>An 3,500-cps filter is inserted into the audio circuit and will only pass audio signals of 3,500 cps or less.</td>
</tr>
<tr>
<td>WIDE</td>
<td>No filters are used in this position, and the width of the received audio signal will be limited only by the type of transmission and the design characteristics of the receiver.</td>
</tr>
<tr>
<td>Control or indicator</td>
<td>Function</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>FUNCTION switch</td>
<td>When rotated to any position other than OFF, connects receiver to power source and selects desired receiver function. The positions and functions are as follows:</td>
</tr>
<tr>
<td>STAND BY</td>
<td>Receiver is disabled but the filaments remain lighted and oscillators remain on; receiver is ready for instant use.</td>
</tr>
<tr>
<td>AGC</td>
<td>Gain is controlled automatically for normal reception.</td>
</tr>
<tr>
<td>MGC</td>
<td>AGC disabled; gain is controlled manually by RF GAIN control or an external gain control.</td>
</tr>
<tr>
<td>CAL</td>
<td>Supplies CAL signals at 100-kc checkpoints.</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>Squelch circuit is connected for silencing receiver when input signal falls below a level determined by setting of RF GAIN control. This enables the operator to monitor any frequency without having to listen to noise between transmissions.</td>
</tr>
<tr>
<td>BREAK IN switch</td>
<td>In ON position, control of the receiver from a remote location is possible, and the receiver is protected from RF voltage from nearby transmitters.</td>
</tr>
<tr>
<td>-ANT. TRIM + control</td>
<td>Provides means for tuning antenna circuit for maximum signal input.</td>
</tr>
<tr>
<td>BFO switch</td>
<td>Places bfo in operation.</td>
</tr>
<tr>
<td>DIAL LOCK control</td>
<td>Locks KILOCYCLE CHANGE control to prevent accidental change of setting.</td>
</tr>
<tr>
<td>ZERO ADJ. control</td>
<td>When turned clockwise, disengages frequency indicator from KILOCYCLE CHANGE control for calibration purposes.</td>
</tr>
<tr>
<td>LOCAL GAIN control</td>
<td>Controls level of af signal to headset or speaker.</td>
</tr>
<tr>
<td>RF GAIN control</td>
<td>Controls gain of rf and if. amplifiers. When squelch circuit is operative, controls squelch and permits maximum agc when in the maximum clockwise position.</td>
</tr>
<tr>
<td>MEGACYCLE CHANGE control</td>
<td>Selects any one of 32 tuning steps; change reading of first two digits of frequency indicator.</td>
</tr>
<tr>
<td>KILOCYCLE CHANGE control</td>
<td>Tunes receiver to any frequency within a band and changes reading of last three digits on the frequency indicator.</td>
</tr>
<tr>
<td>PHONES jack</td>
<td>Provides means of connecting a headset to the receiver.</td>
</tr>
</tbody>
</table>

11. Preparing Receiver for Reception
To prepare the receiver for reception, follow the steps in [figure 7].

12. Calibration Procedures
Frequency indicator calibration is required to maintain the tuning accuracy of the receiver. Calibrate the frequency indicator at the 100-kc checkpoint nearest the frequency desired for reception whenever the MEGACYCLE CHANGE control is operated to select another band. Follow the procedures given in [figure 8]. (For greatest accuracy and stability, the receiver should be allowed to warm up for at least 30 minutes.)

13. Reception of Voice Signals
To receive voice signals, follow the procedures given in [figure 9].

14. Reception of Cw and Mcw Signals
Operate the receiver controls in the same manner as for voice reception, [fig. 9] and then follow the procedures given in [figure 10].

15. Reception of Frequency-Shift Signals
Operate the receiver in the same manner as
Figure 6. Radio Receiver R-390/URR, front panel.
1. Plug a headset Navy Type CW-49507 or equivalent into PHONES jack on front panel.

2. Turn the FUNCTION switch to AGC. Allow the receiver to warm up for several minutes before operating it.

3. Turn the LINE GAIN control to 0.

4. Turn the RF GAIN control to 10.

5. Turn the LOCAL GAIN control to 6.

Figure 7. Preparing receiver for reception (part 1 of 2).
6 Turn the BANDWIDTH switch to 8.

7 Turn the AUDIO RESPONSE switch to WIDE.

8 Turn the AGC switch to MED.

9 Turn the LIMITER control to OFF.

10 Turn the DIAL LOCK control counterclockwise until it stops.

Figure 7. Preparing receiver for reception (part 2 of 2).
1 Set the BANDWIDTH switch to the .1 position.

2 Turn the BFO pitch control to on.

3 Turn the BFO switch to ON.

4 Turn the FUNCTION switch to CAL.

5 Adjust the MEGACYCLE CHANGE control to the megacycle band that includes the frequency desired for reception. In this example, the frequency is being set to 7335 kc; for this frequency, the nearest check point is 7300 kc.

Figure 8. Calibration procedure (part 1 of 2).
6 Adjust the KILOCYCLE CHANGE control so that the frequency indicator is at the 100kc check point nearest the frequency desired for reception (7300 kc in this example).

Note: If a red plus or minus sign appears, do not turn the dial any further in that direction.

7 Turn the ZERO ADJ control fully clockwise.

8 Rotate the ANT. TRIM control to obtain indication on CARRIER LEVEL meter.

9 Adjust the KILOCYCLE CHANGE control (see step 6) for a zero beat indication in the headset or speaker. Zero beat is indicated by a tone diminishing in pitch until it cannot be heard until the control is either turned further in the same direction or turned back towards the position it was in upon starting. The dial is now accurately calibrated.

10 Turn the ZERO ADJ control (step 7) fully counterclockwise.

Figure 8. Calibration procedure (part 2 of 2).

16. Reception of Single-Sideband Signals

Operate the receiver in the same manner as for reception of cw and mcw signals, and then follow the procedure given in figure 11.

17. Stopping Procedure

If the receiver is not going to be used for a short interval (under 10 minutes), place the FUNCTION switch in STANDBY position. When the receiver is no longer needed for
1. Turn the FUNCTION SWITCH to AGC.

2. Turn the LINE GAIN control to 0.

3. Turn the RF GAIN control to 10.

4. Turn the LOCAL GAIN control to 6.

5. Turn the BFO switch to OFF.

6. Set the BANDWIDTH switch to 8 kc.

Figure 9. Reception of voice signals (part 1 of 4).
7 Turn the AUDIO RESPONSE switch to MED.

8 Turn the AGC switch to MED.

9 Turn the LIMITER control to OFF.

10 Disengage the DIAL LOCK control by turning fully counterclockwise.

11 With the MEGACYCLE CHANGE control, select the correct band for the frequency desired.

Figure 9. Reception of voice signal (part 2 of 4).
12 With the KILOCYCLE CHANGE control, set frequency reading indicator to frequency of desired station.

(To maintain tuning accuracy of at least 3 kc, calibrate the dial as directed in paragraph 13 each time the MEGACYCLE CHANGE control is operated to select another band.)

13 Adjust the KILOCYCLE CHANGE (see step 12) and ANT TRIM controls for maximum reading on the CARRIER LEVEL meter.

14 Tighten the DIAL LOCK control by turning fully clockwise (see step 10) to prevent changing of frequency setting.

15 Adjust the LOCAL GAIN control (see step 4) for the desired sound level.

16 If noise is excessive, rotate the LIMITER control (see step 91 clockwise as needed.

17 If interference is encountered, set the BANDWIDTH switch to the 4-kc position or, if necessary, to the 2-kc position.

18 When the signals fade rapidly, set the AGC switch to FAST.

Figure 9. Reception of voice signals (part 3 of 4).
19 When it is desired to quiet the receiver between transmissions, set the FUNCTION switch to SQUELCH.

(Avoid reducing gain to such an extent that the desired signal is eliminated. Do not use squelch if the desired signals are weak and subject to fading.)

20 When the balanced-line output is being used to feed a telephone line to a remote location or to another equipment, set the LINE METER switch to the required range.

21 Adjust the LINE GAIN control (see step 2) for the desired reading on the LINE LEVEL meter, normally this reading will be 0 vu.

22 If the break-in relay is connected to the transmitter control circuits and the receiver is to be disabled during periods of transmission, set the BREAK-IN switch to ON.

Figure 9. Reception of voice signals (part 4 of 4).
1. Set the BFO switch to ON.

2. Set the BFO PITCH control to zero beat the receiver, and then reset the BFO PITCH control for comfortable pitch.

3. If interference is encountered, set the BANDWIDTH switch to the .1 kc or the 1 kc position.

4. Set the AUDIO RESPONSE switch to SHARP.

5. For manual gain control only, set the FUNCTION switch to MGC.

6. Control the sensitivity with the RF GAIN control; maximum sensitivity is obtained at the full clockwise position.

Note. Do not use squelch when receiving mcw signals.

Figure 10. Reception of cw and mcw signals.
reception of any type signals, turn the FUNCTION switch to the OFF position. The proper stopping procedures are shown in figure 13.

18. Antijamming Procedures

When an operator recognizes that his receiver is being jammed, he will promptly inform his immediate superior officer. Under no condition will he cease operating. To provide maximum intelligibility of jammed signals, he will adhere to the operational procedure indicated for each type of operation. When receiving jammed signals, receiving conditions may be improved by performing one or more of the following procedures:

a. Rotate the KILOCYCLE CHANGES control very slowly through several dial markings on either side of the desired signal; some separation of the signal may be achieved.

b. Set the BANDWIDTH control to a lower number to give narrower bandwidth.

c. Reduce the RF GAIN.

d. For cw or mew reception, vary the BFO PITCH control.

e. For cw reception, set the AUDIO RESPONSE switch to SHARP.

f. If severe noise is present, use the LIMITER.

g. Reset the FUNCTION switch to MGC (if AGC is being used).

Note. When receiving frequency-shift signals, refer to the technical manual covering the receiving system for antijamming procedures.
1 Turn the BANDWIDTH switch to 2.

2 Turn the FUNCTION switch to AGC.

3 Tune the KILOCYCLE CHANGE control to the desired frequency; then readjust it slightly until mark and space signals with the same tone are heard.

4 Adjust the BFO PITCH control until the teletypewriter prints good copy (for further information refer to manual in use for the particular system being used).

Figure 11. Reception of frequency shift signals (part 1 of 2).
5 Turn the LINE METER switch to 0.

6 Turn the LINE GAIN control to 10. The LINE LEVEL meter should deflect fully to the right.

7 Adjust the LIMITER control for a LINE LEVEL meter (see step 5) indication at the VU mark.

Figure 11. Reception of frequency shift signals (part 2 of 2).
1 Set the FUNCTION switch to MGC.

2 Set RF GAIN control to 6.

3 Set the LOCAL GAIN control between 5 and 10.

4 Set the BANDWIDTH switch to 2 kc.

5 Turn the BFO switch to ON.

6 Set the BFO PITCH control to -1 for upper sideband reception or to + 1 for lower side band reception.

Figure 12. Reception of single-sideband signals (part 1 of 2).
7 Tune KILOCYCLE CHANGE control to the frequency of the desired signal; +1 kc if the upper sideband is used and -1 kc if the lower sideband is used.

8 If a BANDWIDTH switch setting of 4 kc is to be used, for example when receiving multi-channel teletype signals, double the -1 or +1 setting (6 and 7 above) to -2 or +2.

9 Adjust the BFO PITCH (see step 6) and the KILOCYCLE CHANGE controls (see step 7) slightly for the most intelligible signal reception.

10 Adjust the LOCAL GAIN (see step 3) and the RF GAIN controls (see step 2) for the desired audio level.

Figure 12. Reception of single-sideband signals (part 2 of 2).

1 If receiver is to be kept in a state of readiness for instant use, set the FUNCTION switch to STAND BY. Do not leave in STAND BY position for more than 30 minutes.

2 To turn the receiver off, turn the FUNCTION switch to OFF.

Figure 13. Stopping procedure.
Figure 14 DA Form 11-238.
19. Scope of Operator’s Maintenance
The following is a list of maintenance duties normally performed by the operator of Radio Receiver R-390/URR. These procedures do not require special tools or test equipment.

 a. Preventive maintenance[para 20].
 b. Visual inspection[para 21].
 c. Operational checklist[para 23].
 d. Replacement of defective fuses.
 e. Receiver calibration[para 12].

20. Preventive Maintenance
 a. DA Form 11-238. DA Form 11-238(fig. 14) is a preventive maintenance checklist to be used by the operator. Items not applicable to the receiver are lined out. References in the ITEM block in the figures are to paragraphs that contain additional maintenance information pertinent to the particular item. Instructions for the use of the form appear on the form.

 b. Items. The information shown in this subparagraph is supplementary to DA Form 11-238. The item numbers correspond to the ITEM numbers on the form.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Use a clean cloth to remove dust, dirt, moisture, and grease from the antenna, mast base, microphone, headset, and front panel controls. If necessary, wet the cloth with Cleaning Compound (Federal stock No. 7930-395-9542) and then wipe the parts with a clean dry cloth.</td>
</tr>
<tr>
<td>3</td>
<td>All control knobs should work smoothly, be tight on the shaft, and should not bind. Tighten all loose knobs and be sure that the knobs do not rub against the panel.</td>
</tr>
</tbody>
</table>

 Warning: Cleaning compound is flammable and its fumes are toxic. Do not use near a flame; provide adequate ventilation.

21. Visual Inspection
 a. When the equipment fails to perform properly, turn the power off and check for the following conditions:

 (1) Wrong setting of switches and controls.
 (2) Headset cord or power cord disconnected.
 (3) Antenna lead-in wire disconnected or antenna broken or grounded.
 (4) Burned-out fuse.[para 22].

 b. If the above checks do not locate the trouble, proceed to the operational checklist[para 23].

22. Checking Fuses
 Equipment failure is frequently caused by a blown fuse. Spare fuses (2-, and 3-, and 3/8-ampere) are mounted on the rear panel under a protective cover.

 Caution: Turn off power when replacing fuses. Fuses of correct values must be used or serious damage to the receiver may result. If the replacement fuse burns out immediately after insertion, do not put another fuse in until the cause of fuse failure has been determined by higher echelon repair.

23. Operational Checklist
 a. General. The operational checklist will help the operator to locate the trouble quickly. The corrective measures are used to repair this trouble. If the suggested measures do not restore normal equipment performance, troubleshooting is required by a field radio mechanic. Note on the repair tag what corrective measures were taken and how the equipment performed at the time of failure.

 b. Procedure. Place the set in operation[para 11]. After the equipment has had time to warm up, perform the steps given in c below (in the order given). Observe the equipment operation and perform any corrective measures necessary.
Checklist

<table>
<thead>
<tr>
<th>Action</th>
<th>Normal Indication</th>
<th>Corrective measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION switch at AGC</td>
<td>Dial lamps light. Rushing noise or signal heard in headset.</td>
<td>Check power cable and fuses. Check headset cord and plug.</td>
</tr>
<tr>
<td>Turn MEGACYCLE CHANGE</td>
<td>Proper numbers appear in frequency-indicator window.</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Turn KILOCYCLE CHANGE control to a desired station.</td>
<td>Desired station is heard.</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Adjust ANT TRIM control for a maximum indication of CARRIER LEVEL meter.</td>
<td>A maximum deflection of meter is obtained.</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Turn BFO switch to ON.</td>
<td>A whistle-like tone is heard as each station is tuned in.</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Turn KILOCYCLE CHANGE control</td>
<td>The pitch of the tone changes</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>station is tuned in.</td>
<td>No noise or signal is heard; dial lamp remains lighted.</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Turn BFO PITCH control</td>
<td>Dial lamps go out</td>
<td>Higher echelon repair required.</td>
</tr>
<tr>
<td>Turn FUNCTION switch to STAND BY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn FUNCTION switch to OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Radio Receiver R-390/ URR, back panel.](image)

Figure 15. Radio Receiver R-390/ URR, back panel.
24. Authority for Demolition

Demolition of the equipment will be accomplished only upon the order of the commander. The destruction procedure outlined in paragraph 25 will be used to prevent further use of the equipment.

25. Methods of Destruction

Use any or all of the methods of destruction given below. The time available will be the major determining factor for the methods used. The tactical situation also will determine in what manner the destruction order will be carried out.

a. Smash. Smash tuning indicator, dials, meter, and controls; use sledges, axes, hammers, crowbars, and any other heavy tools available to smash the interior of the set. Use the heaviest tool on hand if time does not permit removing the set from the case.

b. Cut. Cut all cords, cables, and wiring in a number of places; use axes, machetes, and similar tools. If time permits, slash the interior wiring and cabling.

c. Burn. Burn as much of the equipment as is flammable; use gasoline, oil, flamethrowers, or similar tools. Burn instruction literature first. Pour gasoline on the cut cables and internal wiring and ignite it. Use a flamethrower if available to burn the spare parts or pour gasoline on the spares and ignite it. Use incendiary grenades to complete the destruction of the equipment interiors.

d. Explode. Use explosives to complete the demolition or to cause maximum destruction when time does not permit complete demolition by other means; use powder charges, fragmentation grenades or incendiary grenades. Incendiary grenades usually are most effective if destruction of small parts and wiring is desired.

e. Dispose. Bury or scatter destroyed parts in slit trenches, foxholes, or throw them into streams.

Warning: Make sure that all power is disconnected before attempting any of the above methods of destruction. Be extremely careful with explosives and incendiary devices. Use these items only when the need is urgent.
Following is a list of references applicable and available to the operator of Radio Receiver R-390/URR.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA PAM 108-1</td>
<td>Index of Army Motion Pictures, Film Strips, Slides and Photo Recordings.</td>
</tr>
<tr>
<td>FM 21-5</td>
<td>Military Training.</td>
</tr>
<tr>
<td>FM 21-6</td>
<td>Techniques of Military Training.</td>
</tr>
<tr>
<td>FM 21-30</td>
<td>Military Symbols.</td>
</tr>
<tr>
<td>SR 320-5</td>
<td>Dictionary of United States Army Terms.</td>
</tr>
<tr>
<td>SR 320-50</td>
<td>Authorized Abbreviations and Brevity Codes.</td>
</tr>
<tr>
<td>TM 11-5820-357-20P</td>
<td>Organizational Maintenance Repair Parts and Special Tools Lists and Maintenance Allocation Chart: Receiver, Radio R-490/URR.</td>
</tr>
<tr>
<td>TM 11-5820-3659-12P</td>
<td>Operator and Organizational Maintenance Repair Parts and Special Tools Lists and Maintenance Allocation Chart: Power Supply PP-621/URR.</td>
</tr>
</tbody>
</table>
APPENDIX II
BASIC ISSUE ITEMS LIST

Section I. INTRODUCTION

1. Scope
 a. This appendix lists items supplied for initial operation and for running spares. The list includes tools, accessories, parts, and material issue as part of the major end item. The list includes all items authorized for basic operator maintenance of the equipment. End items of equipment are issued on the basis of allowances prescribed in equipment authorization tables and other documents that are a basis for requisitioning.

 b. Columns are as follows:

 (1) Source, maintenance, and recoverability code. Not used.
 (2) Federal stock number. This column lists the 11-digit Federal stock number.
 (3) Designation by model. Not used.
 (4) Description. Nomenclature or the standard item name and brief identifying data for each item are listed in this column. When requisitioning, enter the nomenclature and description on the requisition.

 (5) Unit of issue. The unit of issue is the supply term by which the individual item is counted for procurement, storage, requisitioning, allowances, and issue purposes.

 (6) Expendability. Expendable items are indicated by the letter X; nonexpendable items are indicated by NX.

 (7) Quantity authorized. Under "Items Comprising an Operable Equipment", the column lists the quantity of items supplied for the initial operation of the equipment. Under "Running Spares and Accessory Items," the quantities listed are those issued initially with the equipment as spare parts. The quantities are authorized to be kept on hand by the operator for maintenance of the equipment.

 (8) Illustrations. Not used.

2. Critical Items
 A zero slash (φ) in the "Description" column indicates items that are expected to fail during the first year or items that will make the equipment inoperative if they fail.
Section II. FUNCTIONAL PARTS LIST

<table>
<thead>
<tr>
<th>(1) SOURCE MAINT AND RECOV CODE</th>
<th>(2) FEDERAL STOCK NO.</th>
<th>(3) DESIGNATION BY MODEL</th>
<th>(4) DESCRIPTION</th>
<th>(5) UNIT OF ISSUE</th>
<th>(6) EXPEND-ABILITY</th>
<th>(7) QTY AUTH</th>
<th>(8) ILLUSTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5820-503-1242</td>
<td></td>
<td></td>
<td>RECEIVER, RADIO R-390/URR</td>
<td>ea</td>
<td>NX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order thru AGC</td>
<td>5995-1731-39</td>
<td></td>
<td>TECHNICAL MANUAL TM-5820-357-10</td>
<td>ea</td>
<td>X</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>U520-539-9006</td>
<td></td>
<td></td>
<td>CABLE ASSEMBLY, POWER CX-1358/U; 2 cond No. 18 AWG; 8 ft g</td>
<td>ea</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POWER SUPPLY PP-621/URR: (Installed in end eqpt)</td>
<td>ea</td>
<td>NX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ITEMS COMPRISING AN OPERABLE EQUIPMENT

RECEIVER, RADIO R-390/URR

- ELECTRON TUBE: MIL type 6AJ5, 2 cond No. ea X 2
- ELECTRON TUBE: MIL type 6AK6 ea X 1
- ELECTRON TUBE: MIL type 6B46 ea X 1
- ELECTRON TUBE: MIL type 6B46 ea X 2
- ELECTRON TUBE: MIL type 6C4 ea X 1
- ELECTRON TUBE: MIL type 12AT7WA ea X 1
- ELECTRON TUBE: MIL type 12AU7 ea X 2
- ELECTRON TUBE: MIL type 5651 ea X 1
- ELECTRON TUBE: MIL type 5741h06W; (when V701 is replaced sub-assembly must be adjusted) ea X 1
- ELECTRON TUBE: MIL type 5814A (when changing tubes, VQ01 and Vo02 should be changed at same time) ec X 1
- ELECTRON TUBE: type 60n2 per BUSHIPS Spec ea X 1
- FUSE, CARTRIDGE: 3 amp, 125V; Littlefuse No. 313003 ea X 6
- FUSE, CARTRIDGE: 3/8 amp, 250v; MIL type FO2GR375B ea X 5
- LAMP, INCANDESCENT: 28v, 0.04 amp; Fed Spec No. w-L-111b, trade No. 327 ea X 1
- RESISTOR, CURRENT REGULATING: MIL type TJ311M01 ea X 1

RUNNING SPARES AND ACCESSORY ITEMS

RECEIVER, RADIO R-390/URR

- ELECTRON TUBE: MIL type 6AJ5, ea X 2
- ELECTRON TUBE: MIL type 6AK6 ea X 1
- ELECTRON TUBE: MIL type 6B46 ea X 1
- ELECTRON TUBE: MIL type 6B46 ea X 2
- ELECTRON TUBE: MIL type 6C4 ea X 1
- ELECTRON TUBE: MIL type 12AT7WA ea X 1
- ELECTRON TUBE: MIL type 12AU7 ea X 2
- ELECTRON TUBE: MIL type 5651 ea X 1
- ELECTRON TUBE: MIL type 5741h06W; (when V701 is replaced sub-assembly must be adjusted) ea X 1
- ELECTRON TUBE: MIL type 5814A (when changing tubes, VQ01 and Vo02 should be changed at same time) ec X 1
- ELECTRON TUBE: type 60n2 per BUSHIPS Spec ea X 1
- FUSE, CARTRIDGE: 3 amp, 125V; Littlefuse No. 313003 ea X 6
- FUSE, CARTRIDGE: 3/8 amp, 250v; MIL type FO2GR375B ea X 5
- LAMP, INCANDESCENT: 28v, 0.04 amp; Fed Spec No. w-L-111b, trade No. 327 ea X 1
- RESISTOR, CURRENT REGULATING: MIL type TJ311M01 ea X 1

URR 2
By Order of Wilber M. Brucker, Secretary of the Army:

G.H. DECKER,
General, United States Army,
Chief of Staff.

Official:
R. V. LEE,
Major General, United States Army,
The Adjutant General.

Distribution:
Active Army:
To be distributed in accordance with DA Form 12-7 requirements for TM 11 Series (Uncl) plus the following formula:

USASA (2) 11-57
CNGB (1) 11-85
Tech Stf, DA (1) except
CSigO (18) 11-98
DASA (5) 11-117
US ARADCOM (2) 11-155
US ARADCOM Rgn (2) 11-500 (AA-AE) (4)
MDW (1) 11-557
Seventh US Army (2) 11-587
EUSA (2) 11-592
Units org under fol TOE (2 cy ea except as indc): 11-597
32-51
11-7 32-56
11-16 32-67
11-32

NG: State AG (3); Units-Same as Active Army except allowance is one copy to each unit.

USAR: None.

For explanation of abbreviations used, see AR 820-50.

☆U.S. GOVERNMENT PRINTING OFFICE: 1987 0 - 201-421 (71158)
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH PUBLICATION

THEN...JOT DOWN THE
DOPE ABOUT IT ON THIS FORM.
CAREFULLY TEAR IT OUT, FOLD IT
AND DROP IT IN THE MAIL.

FROM: (PRINT YOUR UNIT’S COMPLETE ADDRESS)

DATE SENT

PUBLICATION NUMBER

PUBLICATION DATE

PUBLICATION TITLE

<table>
<thead>
<tr>
<th>BE EXACT</th>
<th>PIN-POINT WHERE IT IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE NO.</td>
<td>PARA. GRAPH</td>
</tr>
</tbody>
</table>

IN THIS SPACE, TELL WHAT IS WRONG
AND WHAT SHOULD BE DONE ABOUT IT.

PRINTED NAME, GRADE OR TITLE AND TELEPHONE NUMBER

SIGN HERE

P.S.—IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR
RECOMMENDATION MAKE A CARBON COPY OF THIS
AND GIVE IT TO YOUR HEADQUARTERS.
The Metric System and Equivalents

Linear Measure
- 1 centimeter = 10 millimeters = .39 inch
- 1 decimeter = 10 centimeters = 3.94 inches
- 1 meter = 10 decimeters = 39.37 inches
- 1 dekameter = 10 meters = 32.8 feet
- 1 hectometer = 10 dekameters = 328.08 feet
- 1 kilometer = 10 hectometers = 3,280.8 feet

Liquid Measure
- 1 centiliter = 10 milliters = .34 fl. ounce
- 1 deciliter = 10 centiliters = 3.38 fl. ounces
- 1 liter = 10 deciliters = 33.81 fl. ounces
- 1 dekaliter = 10 liters = 2.64 gallons
- 1 hectoliter = 10 dekaliters = 26.42 gallons
- 1 kiloliter = 10 hectoliters = 264.18 gallons

Weights
- 1 centigram = 10 milligrams = .15 grain
- 1 decigram = 10 centigrams = 1.54 grains
- 1 gram = 10 decigrams = .035 ounce
- 1 decagram = 10 grams = .35 ounce
- 1 quintal = 10 kilograms = 220.46 pounds
- 1 metric ton = 10 quintals = 1.1 short tons

Square Measure
- 1 sq. centimeter = 100 sq. millimeters = .155 sq. inch
- 1 sq. decimeter = 100 sq. centimeters = 15.5 sq. inches
- 1 sq. meter = 100 sq. decimeters = 10.76 sq. feet
- 1 sq. dekameter = 100 sq. meters = 32.8 feet
- 1 sq. hectometer = 100 sq. dekameters = 328.08 feet
- 1 sq. kilometer = 100 sq. hectometers = 3,280.8 feet

Cubic Measure
- 1 cu. centimeter = 1000 cu. millimeters = .06 cu. inch
- 1 cu. decimeter = 1000 cu. centimeters = 61.02 cu. inches
- 1 cu. meter = 1000 cu. decimeters = 35.31 cu. feet

Approximate Conversion Factors

<table>
<thead>
<tr>
<th>To change</th>
<th>To</th>
<th>Multiply by</th>
<th>To change</th>
<th>To</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>centimeters</td>
<td>2.540</td>
<td>ounce-inches</td>
<td>Newton-meters</td>
<td>.007062</td>
</tr>
<tr>
<td>feet</td>
<td>meters</td>
<td>.305</td>
<td>centimeters</td>
<td>inches</td>
<td>.394</td>
</tr>
<tr>
<td>yards</td>
<td>meters</td>
<td>.914</td>
<td>meters</td>
<td>feet</td>
<td>3.280</td>
</tr>
<tr>
<td>miles</td>
<td>kilometers</td>
<td>1.609</td>
<td>meters</td>
<td>yards</td>
<td>1.094</td>
</tr>
<tr>
<td>square inches</td>
<td>square centimeters</td>
<td>6.451</td>
<td>kilometers</td>
<td>miles</td>
<td>.621</td>
</tr>
<tr>
<td>square feet</td>
<td>square meters</td>
<td>.093</td>
<td>square centimeters</td>
<td>square inches</td>
<td>.155</td>
</tr>
<tr>
<td>square yards</td>
<td>square meters</td>
<td>.836</td>
<td>square meters</td>
<td>square feet</td>
<td>10.764</td>
</tr>
<tr>
<td>square miles</td>
<td>square kilometers</td>
<td>2.590</td>
<td>square meters</td>
<td>square yards</td>
<td>1.196</td>
</tr>
<tr>
<td>acres</td>
<td>square hectometers</td>
<td>.405</td>
<td>square kilometers</td>
<td>square miles</td>
<td>.386</td>
</tr>
<tr>
<td>cubic feet</td>
<td>cubic meters</td>
<td>.028</td>
<td>square hectometers</td>
<td>acres</td>
<td>2.471</td>
</tr>
<tr>
<td>cubic yards</td>
<td>cubic meters</td>
<td>.765</td>
<td>cubic meters</td>
<td>cubic feet</td>
<td>35.315</td>
</tr>
<tr>
<td>fluid ounces</td>
<td>milliliters</td>
<td>29.573</td>
<td>cubic meters</td>
<td>cubic yards</td>
<td>1.308</td>
</tr>
<tr>
<td>pints</td>
<td>liters</td>
<td>.473</td>
<td>milliliters</td>
<td>fluid ounces</td>
<td>.034</td>
</tr>
<tr>
<td>quarts</td>
<td>liters</td>
<td>.946</td>
<td>liters</td>
<td>pints</td>
<td>2.113</td>
</tr>
<tr>
<td>gallons</td>
<td>liters</td>
<td>3.785</td>
<td>liters</td>
<td>quarts</td>
<td>1.057</td>
</tr>
<tr>
<td>ounces</td>
<td>grams</td>
<td>28.349</td>
<td>liters</td>
<td>gallons</td>
<td>.264</td>
</tr>
<tr>
<td>pounds</td>
<td>kilograms</td>
<td>.454</td>
<td>grams</td>
<td>ounces</td>
<td>.035</td>
</tr>
<tr>
<td>short tons</td>
<td>metric tons</td>
<td>.907</td>
<td>kilograms</td>
<td>pounds</td>
<td>2.205</td>
</tr>
<tr>
<td>pound-feet</td>
<td>Newton-meters</td>
<td>1.356</td>
<td>metric tons</td>
<td>short tons</td>
<td>1.102</td>
</tr>
</tbody>
</table>

Temperature (Exact)

<table>
<thead>
<tr>
<th>°F</th>
<th>Fahrenheit temperature</th>
<th>°C</th>
<th>Celsius temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/9 (after subtracting 32)</td>
<td>32 °C</td>
<td>32 °C</td>
<td></td>
</tr>
</tbody>
</table>